islands on algebraic surfaces
play

ISLANDS ON ALGEBRAIC SURFACES Curtis T McMullen Harvard - PowerPoint PPT Presentation

Algebraic numbers What is the smallest integer > 1? ISLANDS ON ALGEBRAIC SURFACES Curtis T McMullen Harvard University M( ) = product of conjugates with | i | > 1 Answer: Lehmers Number ? The (-2,3,7) pretzel knot 1 0.5


  1. Algebraic numbers What is the smallest integer � > 1? ISLANDS ON ALGEBRAIC SURFACES Curtis T McMullen Harvard University M( � ) = product of conjugates with | � i | > 1 Answer: Lehmer’s Number ? The (-2,3,7) pretzel knot 1 0.5 � -1 -0.5 0.5 1 -0.5 -1 � = 1.1762808182599175... P(x) = x 10 +x 9 � x 7 � x 6 � x 5 � x 4 � x 3 +x+1

  2. Coxeter element Coxeter Groups e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 <e i ,e i > = 2 e 10 <e i ,e k > = 0 or -1 W ⊂ O(n, Z ) : generated by reflections s i in e i Coxeter element w = s 1 s 2 s 3 s 4 ... s 10 Coxeter system λ ( W, S ) det( xI − w ) 1 − x − 3 x 2 − x 3 + x 4 Ah 4 2.36921 Lehmer’s polynomial = det(xI-w) for E 10 (2.26844) (1 + x )(1 − x − 2 x 2 − x 3 + x 4 ) Ah 5 2.08102 1 − 2 x 2 − 3 x 3 − 2 x 4 + x 6 Ah 6 1.98779 (1.96355) (1 + x )(1 + x + x 2 )(1 − 2 x + x 2 − 2 x 3 + x 4 ) Ah 7 1.88320 1 − x 2 − 2 x 3 − 3 x 4 − 2 x 5 − x 6 + x 8 Ah 8 1.83488 (1.82515) (1 + x )(1 − x − x 2 − x 3 + x 4 ) Bh 5 1.72208 1 − x 2 − 2 x 3 − x 4 + x 6 Bh 6 1.58235 The 38 (1 + x )(1 − x − x 3 − x 5 + x 6 ) Bh 7 1.50614 minimal 1 − x 2 − x 3 − x 5 − x 6 + x 8 Theorem. The spectral radius of any w in any 1.45799 Bh 8 Coxeter (1 + x )(1 − x − x 3 + x 4 − x 5 − x 7 + x 8 ) Bh 9 1.42501 Coxeter group satisfies r(w) = 1 or systems (1 + x ) 2 (1 − x − x 2 − x 3 + x 4 ) Dh 6 1.72208 r(w) � � Lehmer > 1. (1 + x )(1 − x 2 − 2 x 3 − x 4 + x 6 ) Dh 7 1.58235 (1 + x ) 2 (1 − x − x 3 − x 5 + x 6 ) Dh 8 1.50614 (1 + x )(1 − x 2 − x 3 − x 5 − x 6 + x 8 ) Dh 9 1.45799 (1 + x ) 2 (1 − x − x 3 + x 4 − x 5 − x 7 + x 8 ) Dh 10 1.42501 (1 + x + x 2 )(1 − x 2 − x 3 − x 4 + x 6 ) Eh 8 1.40127 (1 + x )(1 − x 3 − x 4 − x 5 + x 8 ) Eh 9 1.28064 1 + x − x 3 − x 4 − x 5 − x 6 − x 7 + x 9 + x 10 Eh 10 1.17628

  3. Coxeter system λ ( W, S ) det( xI − w ) Dynamics (1 + x )(1 − x − 2 x 2 − x 3 + x 4 ) 2.08102 K 343 (1 + x ) 2 (1 − 2 x + x 2 − 2 x 3 + x 4 ) K 3433 1.88320 (1 + x ) 2 (1 − 3 x + x 2 ) K 44 2.61803 5 √ K 53 2.15372 (1 + x ) 2 (2 − 3 x − 5 x + 2 x 2 ) 5 √ √ 5 x 3 + 2 x 4 ) K 533 1.91650 (1 + x )(2 − x − 5 x − x 3 − 1 − x 2 − 2 x 3 − x 4 + x 6 L 33433 1.58235 1 − x 2 − x 3 − x 4 + x 6 L 34333 1.40127 5 √ √ 5 x 2 + x 3 − √ 5 x 3 + 2 x 4 L 353 1.84960 2 + x − 5 x − 2 (1 + x )(1 − 2 x + x 2 − 2 x 3 + x 4 ) L 4343 1.88320 1 − x − 2 x 2 − x 3 + x 4 L 443 2.08102 5 √ √ 5 x 3 + 2 x 4 ) 1.36000 (1 + x )(2 − x − 5 x + 2 x 2 − x 3 − L 5333 5 √ √ 5 x 3 + 2 x 4 L 534 1.91650 2 − x − 5 x − x 3 − 5 √ 5 x + 2 x 2 ) L 54 2.15372 (1 + x )(2 − 3 x − 6 1 − x − x 2 − x 3 + x 4 L 633 1.72208 7 (1 + x )(1 + x + x 2 − 4 x cos 2 π / 7) L 73 1.63557 f : X � X holomorphic diffeomorphism √ 3.09066 (1 + x )(1 − 2 x − 2 x + x 2 ) Q 3 (2.89005) of a compact complex manifold √ 2 x 2 − x 3 + x 4 1 − x − x 2 − 2 Q 4 2.57747 √ 2 x 2 − 2 x 3 + x 4 ) (1 + x )(1 − 2 x + x 2 − Q 5 2.43750 (2.3963) What is the simplest interesting dynamical system? (1 + x ) 3 (1 − 3 x + x 2 ) X 5 2.61803 X 6 2.61803 (1 + x ) 4 (1 − 3 x + x 2 ) Bowties Complex Surfaces Theorem (Cantat) A surface X admits an automorphism f : X � X with positive entropy only if X is birational to: • the projective plane P 2 • a complex torus C 2 / � , or • a K3 surface.

  4. Elliptic islands Stochastic Sea A=2 A=2.5 (1+x 2 )(1+y 2 )(1+z 2 )+Axyz = 2 Tame blowup Ergodicity A=8

  5. Complex Orbit A family of K3 surfaces Islands Theorem Synthesis There exists a K3-surface automorphism f : X � X with a complex Number theory: P(t) = det(tI-f*|H 2 (X)) invariant island -- a Siegel disk. Gross-M: P(t) ⇒ f* acting on II 3,19 = H 2 (X,Z) Analysis Torelli: f* ⇒ [X and f:X � X] Hodge theory: study f* on H 2 (X) = H 2,0 ⊕ H 1,1 ⊕ H 0,2 Key ingredient: Degree 22 Salem number of trace -1 Lefschetz: Tr(f*)= -1 ⇔ f has a unique fixed point P P(t) = 1+t-t 3 -2t 4 -3t 5 -3t 6 -2t 7 +2t 9 +4t 10 +5t 11 Atiyah-Bott: f* determines rotation Df P on T P X +4t 12 +2t 13 -2t 15 -3t 16 -3t 17 -2t 18 -t 19 +t 21 +t 22 Transcendence: Df P not resonant Siegel: f ~ linear rotation near P X is not projective!

  6. Rational Surfaces Realization Theorem X = blowup of P 2 at n points The Coxeter element of W n can always be realized by an automorphism F n : X n � X n H 2 (X,Z) ≃ Z 1,n ⊃ K X ⊥ ≃ [E n lattice] of P 2 blown up at n special points. Example: F 3 (x,y) = (y,y/x) (x,y) � (y,y/x) � (y/x,1/x) � (1/x,1/y) � (1/y,x/y) � (x/y,x) � (x,y) Theorem (Nagata) Every automorphism of X lies in the Weyl group W n ⊂ O(Z 1,n ). 3 � X 3 P 2 K X ⊥ = (-3,1,1,...,1) 1 2 10 points on a cuspidal cubic Lehmer’s automorphism F 10 : X 10 � X 10 First case where h(F n ) > 0 Theorem. The map F 10 has minimal positive entropy among all surface automorphisms, namely h(F 10 ) = log( � Lehmer ). (x,y) � (y,y/x) + (a,b)

  7. 12 points on 3 lines Synthesis X = blowup of n points on a cuspidal cubic C in P 2 [E n lattice] ≃ Pic 0 (X n ) � Pic 0 (C) ≃ C ! ! Coxeter element w Eigenvalue � of w � ⇒ positions of n points on C 11 points on a conic + line Speed of convergence

  8. Island on a rational surface

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend