invariance and symbolic control of cooperative systems
play

Invariance and symbolic control of cooperative systems for - PowerPoint PPT Presentation

Monotonicity Invariance Symbolic Compositional Experiment Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings Pierre-Jean Meyer Universit e Grenoble-Alpes PhD Defense, September 24 th


  1. Monotonicity Invariance Symbolic Compositional Experiment Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings Pierre-Jean Meyer Universit´ e Grenoble-Alpes PhD Defense, September 24 th 2015 September 24 th 2015 Pierre-Jean Meyer PhD Defense 1 / 45

  2. Monotonicity Invariance Symbolic Compositional Experiment Motivations Develop new control methods for intelligent buildings Focus on temperature control in a small-scale experimental building September 24 th 2015 Pierre-Jean Meyer PhD Defense 2 / 45

  3. Monotonicity Invariance Symbolic Compositional Experiment Outline Monotone control system 1 Robust controlled invariance 2 Symbolic control 3 Compositional approach 4 Control in intelligent buildings 5 September 24 th 2015 Pierre-Jean Meyer PhD Defense 3 / 45

  4. Monotonicity Invariance Symbolic Compositional Experiment System description Nonlinear control system: x = f ( x , u , w ) ˙ x : state u : control input Trajectories: w : disturbance input x = Φ( · , x 0 , u , w ) x , u , w : time functions x x = Φ( · , x 0 , u , w ) x 0 x ( t ) f ( x ( t ) , u ( t ) , w ( t )) t September 24 th 2015 Pierre-Jean Meyer PhD Defense 4 / 45

  5. Monotonicity Invariance Symbolic Compositional Experiment Monotone system Definition (Monotonicity) The system is monotone if Φ preserves the componentwise inequality: u ≥ u ′ , w ≥ w ′ , x 0 ≥ x ′ 0 ⇒ ∀ t ≥ 0 , Φ( t , x , u , w ) ≥ Φ( t , x ′ , u ′ , w ′ ) u, w x Φ( · , x 0 , u , w ) w x 0 w ′ ⇒ x ′ Φ( · , x ′ 0 , u ′ , w ′ ) u 0 u ′ t t September 24 th 2015 Pierre-Jean Meyer PhD Defense 5 / 45

  6. Monotonicity Invariance Symbolic Compositional Experiment Bounded inputs Control and disturbance inputs bounded in intervals: ∀ t ≥ 0 , u ( t ) ∈ [ u , u ] , w ( t ) ∈ [ w , w ] = ⇒ ∀ t ≥ 0 , Φ( t , x 0 , u , w ) ∈ [Φ( t , x 0 , u , w ) , Φ( t , x 0 , u , w )] x Φ( · , x 0 , u, w ) Φ( · , x 0 , u , w ) x 0 Φ( · , x 0 , u, w ) t September 24 th 2015 Pierre-Jean Meyer PhD Defense 6 / 45

  7. Monotonicity Invariance Symbolic Compositional Experiment Characterization Proposition (Kamke-M¨ uller) The system ˙ x = f ( x , u , w ) is monotone if and only if the following implication holds for all i: u ≥ u ′ , w ≥ w ′ , x ≥ x ′ , x i = x ′ i ⇒ f i ( x , u , w ) ≥ f i ( x ′ , u ′ , w ′ ) Proposition (Partial derivatives) The system ˙ x = f ( x , u , w ) with continuously differentiable vector field f is monotone if and only if: ∀ i , j � = i , k , l , ∂ f i ∂ f i ≥ 0 , ∂ f i ≥ 0 , ≥ 0 ∂ x j ∂ u k ∂ w l September 24 th 2015 Pierre-Jean Meyer PhD Defense 7 / 45

  8. Monotonicity Invariance Symbolic Compositional Experiment Outline Monotone control system 1 Robust controlled invariance 2 Symbolic control 3 Compositional approach 4 Control in intelligent buildings 5 September 24 th 2015 Pierre-Jean Meyer PhD Defense 8 / 45

  9. Monotonicity Invariance Symbolic Compositional Experiment Definitions Definition (Robust Controlled Invariance) A set S is a robust controlled invariant if there exists a controller such that the closed-loop system stays in S for any initial state and disturbance: ∃ u : S → [ u , u ] | ∀ x 0 ∈ S , ∀ w ∈ [ w , w ] , ∀ t ≥ 0 , Φ u ( t , x 0 , w ) ∈ S September 24 th 2015 Pierre-Jean Meyer PhD Defense 9 / 45

  10. Monotonicity Invariance Symbolic Compositional Experiment Definitions Definition (Robust Controlled Invariance) A set S is a robust controlled invariant if there exists a controller such that the closed-loop system stays in S for any initial state and disturbance: ∃ u : S → [ u , u ] | ∀ x 0 ∈ S , ∀ w ∈ [ w , w ] , ∀ t ≥ 0 , Φ u ( t , x 0 , w ) ∈ S Definition (Local control) Each control input affects a single state variable: ∀ k , ∃ ! i | ∂ f i � = 0 ∂ u k September 24 th 2015 Pierre-Jean Meyer PhD Defense 9 / 45

  11. Monotonicity Invariance Symbolic Compositional Experiment Robust controlled invariance Theorem (Meyer, Girard, Witrant, CDC 2013) With the monotonicity and local control properties, the interval [ x , x ] ⊆ R n is robust controlled invariant if and only if � f ( x , u , w ) ≤ 0 f ( x , u , w ) ≥ 0 x f ( x, u, w ) f ( x, u, w ) x September 24 th 2015 Pierre-Jean Meyer PhD Defense 10 / 45

  12. Monotonicity Invariance Symbolic Compositional Experiment Robust controlled invariance Theorem (Meyer, Girard, Witrant, CDC 2013) With the monotonicity and local control properties, the interval [ x , x ] ⊆ R n is robust controlled invariant if and only if � f ( x , u , w ) ≤ 0 f ( x , u , w ) ≥ 0 x Sides of [ x , x ] f ( x, u, w ) x ≤ x , x 1 = x 1 w ≤ w f ( x, u, w ) x Kamke-M¨ uller condition: f ( x, u, w ) f 1 ( x , u , w ) ≤ f 1 ( x , u , w ) ≤ 0 x September 24 th 2015 Pierre-Jean Meyer PhD Defense 10 / 45

  13. Monotonicity Invariance Symbolic Compositional Experiment Robust controlled invariance Theorem (Meyer, Girard, Witrant, CDC 2013) With the monotonicity and local control properties, the interval [ x , x ] ⊆ R n is robust controlled invariant if and only if � f ( x , u , w ) ≤ 0 f ( x , u , w ) ≥ 0 x Other vertices of [ x , x ] f ( x, u, w ) f 1 ( x , u , w ) ≤ f 1 ( x , u , w ) ≤ 0 f ( x, u, w ) f 2 ( x , u , w ) ≥ f 2 ( x , u , w ) ≥ 0 f ( x, u, w ) Choice of u ? x Use local control property x September 24 th 2015 Pierre-Jean Meyer PhD Defense 10 / 45

  14. Monotonicity Invariance Symbolic Compositional Experiment Choice of the interval x 2 x ∈ R 2 x 2 conditions on x f 1 ( x , u , w ) ≤ 0 f 2 ( x , u , w ) ≤ 0 2 conditions on x f 1 ( x , u , w ) ≥ 0 x f 2 ( x , u , w ) ≥ 0 x 1 September 24 th 2015 Pierre-Jean Meyer PhD Defense 11 / 45

  15. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization Definition (Stabilizing controller) A controller u : S 0 → [ u , u ] is a stabilizing controller from S 0 to S if ∀ x 0 ∈ S 0 , ∀ w ∈ [ w , w ] , ∃ T ≥ 0 | ∀ t ≥ T , Φ u ( t , x 0 , w ) ∈ S September 24 th 2015 Pierre-Jean Meyer PhD Defense 12 / 45

  16. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization Definition (Stabilizing controller) A controller u : S 0 → [ u , u ] is a stabilizing controller from S 0 to S if ∀ x 0 ∈ S 0 , ∀ w ∈ [ w , w ] , ∃ T ≥ 0 | ∀ t ≥ T , Φ u ( t , x 0 , w ) ∈ S Let S 0 = [ x 0 , x 0 ] and S = [ x , x ] ⊆ [ x 0 , x 0 ] Assumption ∃ X , X : [0 , 1] → R n , respectively strictly decreasing and increasing , such that [ X (1) , X (1)] = [ x 0 , x 0 ] , [ X (0) , X (0)] = [ x , x ] and satisfying f ( X ( λ ) , u , w ) > 0 , f ( X ( λ ) , u , w ) < 0 , ∀ λ ∈ [0 , 1] September 24 th 2015 Pierre-Jean Meyer PhD Defense 12 / 45

  17. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization f ( X ( λ ) , u , w ) > 0 , f ( X ( λ ) , u , w ) < 0 , ∀ λ ∈ [0 , 1] ∀ λ, λ ′ ∈ [0 , 1] , [ X ( λ ) , X ( λ ′ )] is a robust controlled invariant interval x 2 X (1) X X (0) X (0) X x 1 X (1) September 24 th 2015 Pierre-Jean Meyer PhD Defense 13 / 45

  18. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization Take the smallest interval of this family containing the current state x Apply any invariance controller in this interval x 2 x X (0) X (0) x 1 September 24 th 2015 Pierre-Jean Meyer PhD Defense 13 / 45

  19. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization � λ ( x ) = min { λ ∈ [0 , 1] | X ( λ ) ≥ x } λ ( x ) = min { λ ∈ [0 , 1] | X ( λ ) ≤ x } [ X ( λ ( x )) , X ( λ ( x ))] is the smallest interval containing the current state x September 24 th 2015 Pierre-Jean Meyer PhD Defense 14 / 45

  20. Monotonicity Invariance Symbolic Compositional Experiment Robust set stabilization � λ ( x ) = min { λ ∈ [0 , 1] | X ( λ ) ≥ x } λ ( x ) = min { λ ∈ [0 , 1] | X ( λ ) ≤ x } [ X ( λ ( x )) , X ( λ ( x ))] is the smallest interval containing the current state x Invariance controller Candidate stabilizing controller X i ( λ ( x )) − x i u i ( x ) = u i + ( u i − u i ) x i − x i u i ( x ) = u i + ( u i − u i ) (1) x i − x i X i ( λ ( x )) − X i ( λ ( x )) Theorem (Meyer, Girard, Witrant, prov. accepted in Automatica) (1) is a stabilizing controller from [ X (1) , X (1)] to [ X (0) , X (0)] . September 24 th 2015 Pierre-Jean Meyer PhD Defense 14 / 45

  21. Monotonicity Invariance Symbolic Compositional Experiment Outline Monotone control system 1 Robust controlled invariance 2 Symbolic control 3 Compositional approach 4 Control in intelligent buildings 5 September 24 th 2015 Pierre-Jean Meyer PhD Defense 15 / 45

  22. Monotonicity Invariance Symbolic Compositional Experiment Abstraction-based synthesis Continuous state Uncontrolled x + = f ( x, u, w ) Synthesis w Controlled x + = f ( x, u, w ) x u Controller September 24 th 2015 Pierre-Jean Meyer PhD Defense 16 / 45

  23. Monotonicity Invariance Symbolic Compositional Experiment Abstraction-based synthesis Continuous state Discrete state u 1 Uncontrolled u 1 x + = f ( x, u, w ) u 2 u 2 Abstraction Controlled September 24 th 2015 Pierre-Jean Meyer PhD Defense 16 / 45

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend