introductory course on non smooth optimisation
play

Introductory Course on Non-smooth Optimisation Lecture 04 - - PowerPoint PPT Presentation

Introductory Course on Non-smooth Optimisation Lecture 04 - BackwardBackward splitting Jingwei Liang Department of Applied Mathematics and Theoretical Physics Table of contents Problem 1 2 ForwardBackward splitting revisit MAP


  1. Introductory Course on Non-smooth Optimisation Lecture 04 - Backward–Backward splitting Jingwei Liang Department of Applied Mathematics and Theoretical Physics

  2. Table of contents Problem 1 2 Forward–Backward splitting revisit MAP continue 3 4 Backward–Backward splitting 5 Numerical experiments

  3. Monotone inclusion pronblem Problem Let B : R n → R n be β -cocoercive for some β > 0, s > 1 be a positive integer, such that for each i ∈ { 1 , ..., s } : A i : R n ⇒ R n is maximal monotone. Consider the problem Find x ∈ R n such that 0 ∈ B ( x ) + � s i = 1 A i ( x ) . A i can be composed with linear mapping, e.g. L ∗ ◦ A ◦ L . Even if the resolvents of B and each A i are simple, the resolvent of B + � i A i in most cases is not solvable. Use the properties of operators and structure of problem to derive operator splitting schemes. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  4. Outline 1 Problem 2 Forward–Backward splitting revisit 3 MAP continue 4 Backward–Backward splitting 5 Numerical experiments

  5. Monotone inclusion problem Monotone inclusion Find x ∈ R n such that 0 ∈ A ( x ) + B ( x ) . Assump Assumptions tions A : R n ⇒ R n is maximal monotone. B : R n → R n is β -cocoersive. zer ( A + B ) � = ∅ . Characterisation of minimiser: γ > 0 x ⋆ − γ B ( x ⋆ ) ∈ x ⋆ + γ A ( x ⋆ ) x ⋆ = J γ A ◦ ( Id − γ B )( x ⋆ ) . ⇔ ample Let R ∈ Γ 0 and F ∈ C 1 Ex Example L , min x ∈ R n R ( x ) + F ( x ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  6. Forward–Backward splitting Fixed-point operator: γ ∈ ] 0 , 2 β [ T FB = J γ A ◦ ( Id − γ B ) . J γ A is firmly non-expansive. γ Id − γ B is 2 β -averaged non-expansive. 2 β T FB is 4 β − γ -averaged non-expansive. fix ( T FB ) = zer ( A + B ) . Forward–Backward splitting Let γ ∈ ] 0 , 2 β [ , λ k ∈ [ 0 , 4 β − γ 2 β ] : x k + 1 = ( 1 − λ k ) x k + λ k T FB ( x k ) . Special case of Krasnosel’ski˘ ı-Mann iteration. Recovers proximal point algorithm when B = 0. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  7. Outline 1 Problem 2 Forward–Backward splitting revisit 3 MAP continue 4 Backward–Backward splitting 5 Numerical experiments

  8. Method of alternating projection Let X , Y ⊆ R n be closed convex and non-empty, such that X ∩ Y � = ∅ x ∈ R n ι X ( x ) + ι Y ( x ) . min Method of alternating projection (MAP) Let x 0 ∈ X : y k + 1 = P Y ( x k ) , x k + 1 = P X ( y k + 1 ) . Fixed-point operator: x k + 1 = T MAP ( x k ) , T MAP def = P X ◦ P Y . P X , P Y are firmly non-expansive. T MAP is 2 3 -averaged non-expansive. fix ( T MAP ) = X ∩ Y . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  9. Derive MAP Feasibility problem is equivalent to 2 || x − y || 2 + ι Y ( y ) . x , y ∈ R n ι X ( x ) + 1 min Optimality condition 0 ∈ N Y ( y ⋆ ) + y ⋆ − x ⋆ , 0 ∈ N X ( x ⋆ ) + x ⋆ − y ⋆ . Fixed-point characterisation y ⋆ = P Y ( x ⋆ ) , x ⋆ = P X ( y ⋆ ) . Fixed-point iteration y k + 1 = P Y ( x k ) , x k + 1 = P X ( y k + 1 ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  10. Example: SDP feasibility SDP feasibility Find X ∈ S n such that X � 0 Tr ( A i X ) = b i , i = 1 , ..., m . and Two sets and projection: X = S n + is the positive semidefinite cone. Let Y k = � n i = 1 σ i u i u T i be the eigenvalue decomposition of Y k , then P X ( Y k ) = � n i = 1 max { 0 , σ i } u i u T i . Y is the affine set in S n define by the linear inequalities, P Y ( X k ) = X k − � m i = 1 u i A i , where u i are found from the normal equations � � Gu = Tr ( A i X k ) − b i , · · · , Tr ( A i X k ) − b m , G i , j = Tr ( A i A j ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  11. Convergence rate Let X , Y be two subspaces, and assume 1 ≤ p def = dim( X ) ≤ q def = dim( Y ) ≤ n − 1 . angles The principal angles θ k ∈ [ 0 , π 2 ] , k = 1 , . . . , p between X and Y are defined by, Principal Principal angles with u 0 = v 0 def = 0, and cos ( θ k ) def = � u k , v k � = max � u , v � s . t . u ∈ X , v ∈ Y , || u || = 1 , || v || = 1 , � u , u i � = � v , v i � = 0 , i = 0 , · · · , k − 1 . angle The Friedrichs angle θ F ∈ ] 0 , π 2 ] between X and Y is Friedrichs Friedrichs angle � def u ∈ X ∩ ( X ∩ Y ) ⊥ , || u || = 1 , � θ F ( X , Y ) = max � u , v � s . t . cos v ∈ Y ∩ ( X ∩ Y ) ⊥ , || v || = 1 . Lemma def = dim( X ∩ Y ) . Moreover, The Friedrichs angle is θ d + 1 where d θ F ( X , Y ) > 0 . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  12. Convergence rate Example X , Y are defined by X = { x : Ax = 0 } , Y = { x : Bx = 0 } . Projection onto subspace P X ( x ) = x − A T ( AA T ) − 1 Ax . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  13. Convergence rate Define diagonal matrices � � c = diag cos ( θ 1 ) , · · · , cos ( θ p ) , � sin ( θ 1 ) , · · · , sin ( θ p ) � s = diag . Suppose p + q < n , then there exists orthogonal matrix U such that   Id p 0 0 0   0 0 p 0 0  U ∗ , P X = U     0 0 0 q − p 0  0 0 0 0 n − p − q   c 2 cs 0 0 c 2   cs 0 0  U ∗ . P Y = U     0 0 Id q − p 0  0 0 0 0 n − p − q Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  14. Convergence rate Fixed-point operator T MAP = P X ◦ P Y   c 2 cs 0 0   0 0 p 0 0  U ∗ . = U     0 0 0 q − p 0  0 0 0 0 n − p − q Consider relaxation T λ MAP = ( 1 − λ ) Id + λ T MAP   ( 1 − λ ) Id p + λ c 2 λ cs 0  U ∗ . = U ( 1 − λ ) Id p   0 0  ( 1 − λ ) Id n − 2 p 0 0 Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  15. Convergence rate Eigenvalues σ ( T λ � � MAP ) = 1 − λ sin 2 ( θ i ) | i = 1 , ..., p ∪ { 1 − λ } . Spectral radius ρ ( T λ � � MAP ) = max 1 − λ sin 2 ( θ F ) , | 1 − λ | . No relaxation ρ ( T MAP ) = cos 2 ( θ F ) . Convergence rate, C > 0 is some constant || x k − x ⋆ || = ||T MAP x k − 1 − T MAP x ⋆ || = ... MAP ( x 0 − x ⋆ ) || = ||T k ≤ C ||T MAP || k || x 0 − x ⋆ || . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  16. Outline 1 Problem 2 Forward–Backward splitting revisit 3 MAP continue 4 Backward–Backward splitting 5 Numerical experiments

  17. Best pair problem When X ∩ Y � = ∅ , MAP returns x k , y k → x ⋆ ∈ X ∩ Y . Best pair problem Let X , Y ⊆ R n be closed and convex, such that X ∩ Y = ∅ . Consider finding two points in X and Y such that they are the closest, that is x ∈X , y ∈Y || x − y || . min MAP can be applied and ( x k , y k ) → ( x ⋆ , y ⋆ ) where ( x ⋆ , y ⋆ ) is a best pair. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  18. Backward–Backward splitting Consider Find x , y ∈ R n such that 0 ∈ A ( x ) + B ( y ) , A , B : R n ⇒ R n are maximal monotone. The set of solition is non-empty. There exists x ⋆ , y ⋆ ∈ R n and γ > 0 such that y ⋆ − x ⋆ ∈ γ A ( x ⋆ ) , x ⋆ − y ⋆ ∈ γ B ( y ⋆ ) . Backward–Backward splitting Let x 0 ∈ R n , γ > 0: y k + 1 = J γ B ( x k ) , x k + 1 = J γ A ( y k + 1 ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  19. Regularised monotone inclusion Yosida osida appr approxima ximation tion γ A = 1 γ ( Id − J γ A ) . which is γ -cocoercive. Regularised egularised monot monotone one inclusion inclusion Find x ∈ R n such that 0 ∈ A ( x ) + γ B ( x ) . ting τ ∈ ] 0 , 2 γ ] For orwar ard–Backw d–Backwar ard split splitting x k + 1 = J τ A ◦ ( Id − τ γ B )( x k ) . FB let τ = γ BB BB as as special special case ase of of FB x k + 1 = J γ A ◦ ( Id − γ γ B )( x k ) = J γ A ◦ � Id − γ 1 γ ( Id − J γ B ) � ( x k ) = J γ A ◦ J γ B ( x k ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  20. Inertial BB splitting An inertial Backward–Backward splitting Initial : x 0 ∈ R n , x − 1 = x 0 and γ > 0 , τ ∈ ] 0 , 2 γ ] ; Initial y k = x k + a 0 , k ( x k − x k − 1 ) + a 1 , k ( x k − 1 − x k − 2 ) + · · · , x k + 1 = J γ A ◦ J γ B ( y k ) , λ k ∈ [ 0 , 1 ] . An inertial BB splitting based on Yosida approximation Initial : x 0 ∈ R n , x − 1 = x 0 and γ > 0; Initial y k = x k + a 0 , k ( x k − x k − 1 ) + a 1 , k ( x k − 1 − x k − 2 ) + · · · , z k = x k + b 0 , k ( x k − x k − 1 ) + b 1 , k ( x k − 1 − x k − 2 ) + · · · , � y k − τ γ B ( z k ) � x k + 1 = J τ A ◦ , λ k ∈ [ 0 , 1 ] . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation November 21, 2019

  21. Outline 1 Problem 2 Forward–Backward splitting revisit 3 MAP continue 4 Backward–Backward splitting 5 Numerical experiments

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend