introductory course on non smooth optimisation
play

Introductory Course on Non-smooth Optimisation Lecture 05 - - PowerPoint PPT Presentation

Introductory Course on Non-smooth Optimisation Lecture 05 - PeacemanRachford, DouglasRachford splitting Jingwei Liang Department of Applied Mathematics and Theoretical Physics Table of contents 1 Problem 2 PeacemanRachford splitting


  1. Introductory Course on Non-smooth Optimisation Lecture 05 - Peaceman–Rachford, Douglas–Rachford splitting Jingwei Liang Department of Applied Mathematics and Theoretical Physics

  2. Table of contents 1 Problem 2 Peaceman–Rachford splitting 3 Douglas–Rachford splitting Sum of more than two operators 4 Spingarn’s method of partial inverses 5 Acceleration 6 Numerical experiments 7

  3. Sum of two operators Pr Problem oblem Find x ∈ R n such that 0 ∈ A ( x ) + B ( x ) . Assump Assumptions tions A , B : R n ⇒ R n are maximal monotone. the resolvents of A , B are simple, i.e. easy to compute. zer ( A + B ) � = ∅ . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  4. Outline 1 Problem 2 Peaceman–Rachford splitting 3 Douglas–Rachford splitting 4 Sum of more than two operators 5 Spingarn’s method of partial inverses 6 Acceleration 7 Numerical experiments

  5. Peaceman–Rachford splitting Peaceman–Rachford splitting Let z 0 ∈ R n , γ > 0: x k = J γ B ( z k ) , y k = J γ A ( 2 x k − z k ) , z k + 1 = z k + 2 ( y k − x k ) . dates back to 1950s for solving numerical PDEs. the resolvents of A , B are evaluated separately. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  6. How to derive given x ⋆ ∈ zer ( A + B ) , there exists z ⋆ ∈ R n such that � � z ⋆ − x ⋆ ∈ γ A ( x ⋆ ) z ⋆ ∈ x ⋆ + γ A ( x ⋆ ) , = ⇒ x ⋆ − z ⋆ ∈ γ B ( x ⋆ ) 2 x ⋆ − z ⋆ ∈ x ⋆ + γ B ( x ⋆ ) . apply the resolvent � x ⋆ = J γ A ( z ⋆ ) , x ⋆ = J γ B ( 2 x ⋆ − z ⋆ ) . equivalent formulation � x ⋆ = J γ A ( z ⋆ ) , � J γ B ( 2 x ⋆ − z ⋆ ) − x ⋆ � z ⋆ = z ⋆ + 2 . fixed-point iteration � x k = J γ A ( z k ) , � � z k + 1 = z k + 2 J γ B ( 2 x k − z k ) − x k . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  7. Fixed-point characterisartion tion Recall reflection operator R γ A = 2 J γ A − Id. Fixed-poin Fix ed-point formula ormulation y k = J γ A ( 2 x k − z k ) = J γ A ◦ ( 2 J γ B − Id )( z k ) . For z k , z k + 1 = z k + 2 ( y k − x k ) � � = z k + 2 J γ A ◦ ( 2 J γ B − Id )( z k ) − J γ B ( z k ) = 2 J γ A ◦ ( 2 J γ B − Id )( z k ) − ( 2 J γ B − Id )( z k ) = ( 2 J γ A − Id ) ◦ ( 2 J γ B − Id )( z k ) . Pr Property operty R γ A = 2 J γ A − Id , R γ B = 2 J γ B − Id are non-expansive. T PR = R γ A ◦ R γ B is non-expansive. NB : Cannot guarantee convergence in general. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  8. Convergence Uniform monotonicity: φ : R + → [ 0 , + ∞ ] is increasing and vanishes only at 0 � u − v , x − y � ≥ φ ( || x − y || ) , ( x , u ) , ( y , v ) ∈ gra ( B ) . If B is uniformly monotone, then zer ( A + B ) = { x ⋆ } and fix ( T PR ) � = ∅ . Moreover � x − y , J γ B ( x ) − J γ B ( y ) � ≥ || J γ B ( x ) − J γ B ( y ) || 2 + γφ ( || J γ B ( x ) − J γ B ( y ) || ) . Let z ⋆ ∈ fix ( T PR ) , then x ⋆ = J γ A ( z ⋆ ) , and || z k + 1 − z ⋆ || 2 = || R γ A R γ B ( z k ) − R γ A R γ B ( z ⋆ ) || 2 ≤ || ( 2 J γ B − Id )( z k ) − ( 2 J γ B − Id )( z ⋆ ) || 2 = || z k − z ⋆ || 2 − 4 � z k − z ⋆ , J γ B ( z k ) − J γ B ( z ⋆ ) � + 4 || J γ B ( z k ) − J γ B ( z ⋆ ) || 2 ≤ || z k − z ⋆ || 2 − 4 γφ ( || J γ B ( z k ) − J γ B ( z ⋆ ) || ) . φ ( || z k − z ⋆ || ) → 0 and || z k − z ⋆ || → 0. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  9. Outline 1 Problem 2 Peaceman–Rachford splitting 3 Douglas–Rachford splitting 4 Sum of more than two operators 5 Spingarn’s method of partial inverses 6 Acceleration 7 Numerical experiments

  10. Douglas–Rachford splitting To overcome the drawback of Peaceman–Rachford splitting. Douglas–Rachford splitting Let z 0 ∈ R n , γ > 0 , λ ∈ ] 0 , 2 [ : x k = J γ B ( z k ) , y k = J γ A ( 2 x k − z k ) , z k + 1 = z k + λ ( y k − x k ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  11. How to derive given x ⋆ ∈ zer ( A + B ) , there exists z ⋆ ∈ R n such that � � z ⋆ − x ⋆ ∈ γ A ( x ⋆ ) z ⋆ ∈ x ⋆ + γ A ( x ⋆ ) , = ⇒ x ⋆ − z ⋆ ∈ γ B ( x ⋆ ) 2 x ⋆ − z ⋆ ∈ x ⋆ + γ B ( x ⋆ ) . apply the resolvent � x ⋆ = J γ A ( z ⋆ ) , x ⋆ = J γ B ( 2 x ⋆ − z ⋆ ) . equivalent formulation � x ⋆ = J γ A ( z ⋆ ) , � J γ B ( 2 x ⋆ − z ⋆ ) − x ⋆ � z ⋆ = z ⋆ + . fixed-point iteration � x k = J γ A ( z k ) , � � z k + 1 = z k + J γ B ( 2 x k − z k ) − x k . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  12. Fixed-point characterisartion tion Same as PR, y k = J γ A ◦ R γ B ( z k ) Fix Fixed-poin ed-point formula ormulation � � z k + 1 = ( 1 − λ ) z k + λ z k + ( y k − x k ) � 1 � = ( 1 − λ ) z k + λ 2 z k + 1 2 ( z k + 2 ( y k − x k )) = ( 1 − λ ) z k + λ 1 2 ( Id + R γ A ◦ R γ B )( z k ) . Pr Property operty T DR = 1 2 ( Id + R γ A ◦ R γ B ) is firmly non-expansive. T λ DR = ( 1 − λ ) Id + λ T DR is λ 2 -averaged non-expansive. Peaceman–Rachford is the limiting case of Douglas–Rachford, λ = 2. NB : guaranteed convergence if λ ( 2 − λ ) > 0. Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  13. Convergence rate Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  14. Convergence rate Let X , Y be two subspaces X = { x : ax = 0 } , Y = { x : bx = 0 } and assume 1 ≤ p def = dim( X ) ≤ q def = dim( Y ) ≤ n − 1 . Projection onto subspace P X ( x ) = x − a T ( aa T ) − 1 ax . Define diagonal matrices � � c = diag cos ( θ 1 ) , · · · , cos ( θ p ) , � � s = diag sin ( θ 1 ) , · · · , sin ( θ p ) . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  15. Convergence rate Suppose p + q < n , then there exists orthogonal matrix U such that   Id p 0 0 0     0 0 p 0 0  U ∗ P X = U    0 q − p 0 0 0 0 n − p − q 0 0 0   and c 2 cs 0 0    c 2  cs 0 0  U ∗ . P Y = U    0 0 Id q − p 0 0 0 0 0 n − p − q Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  16. Convergence rate For the composition   c 2 0 0 cs     0 0 p 0 0  U ∗ P X ◦ P Y = U    0 q − p 0 0 0 0 n − p − q 0 0 0   and 0 p 0 0 0   − cs  c 2  0 0  U ∗ . P X ⊥ ◦ P Y ⊥ = U    0 0 0 q − p 0 Id n − p − q 0 0 0 Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  17. Convergence rate Fixed-point operator T DR = P X ◦ P Y + P X ⊥ ◦ P Y ⊥   c 2 cs 0 0   − cs c 2   0 0  U ∗ . = U    0 0 0 q − p 0 0 0 0 Id n − p − q Consider relaxation T λ DR = ( 1 − λ ) Id + λ T DR   Id p − λ s 2 λ cs 0 0   − λ cs Id p − λ s 2   0 0  U ∗ . = U    ( 1 − λ ) Id q − p 0 0 0 0 0 0 Id n − p − q Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  18. Convergence rate Eigenvalues � � � 1 − λ sin 2 ( θ i ) ± i λ cos ( θ i ) sin ( θ i ) | i = 1 , ..., p ∪ { 1 } : q = p , σ ( T λ DR ) = � � 1 − λ sin 2 ( θ i ) ± i λ cos ( θ i ) sin ( θ i ) | i = 1 , ..., p ∪ { 1 } ∪ { 1 − λ } : q > p . Complex eigenvalues � | 1 − λ sin 2 ( θ i ) ± i λ cos ( θ i ) sin ( θ i ) | = λ ( 2 − λ ) cos 2 ( θ i ) + ( 1 − λ ) 2 and � λ ( 2 − λ ) cos 2 ( θ i ) + ( 1 − λ ) 2 ≥ | 1 − λ | . 1 ≥ DR and z k − z ⋆ = ( T DR − T ∞ DR = T ∞ DR )( z k − 1 − z ⋆ ) . lim k → + ∞ T k Spectral radius, minimises at λ = 1 � ρ ( T DR − T ∞ DR ) = λ ( 2 − λ ) cos 2 ( θ i ) + ( 1 − λ ) 2 . � T DR = T DR − T ∞ DR || z k − z ⋆ || = || � T DR z k − 1 − � T DR z ⋆ || = ... = || � k ( z 0 − z ⋆ ) || T DR � � k || z 0 − z ⋆ || . ρ ( � ≤ C T DR ) Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  19. Optimal metric for DR X ′ and Y X and Y tric A invertable operation which makes the Friedrichs angle between X ′ and Y the Op Optimal timal me metric largest, e.g. π 2 ... Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

  20. Outline 1 Problem 2 Peaceman–Rachford splitting 3 Douglas–Rachford splitting 4 Sum of more than two operators 5 Spingarn’s method of partial inverses 6 Acceleration 7 Numerical experiments

  21. More than two operators oblem s ∈ N + and s ≥ 2 Pr Problem Find x ∈ R n such that 0 ∈ � i A i ( x ) . Assump Assumptions tions for each i = 1 , ..., s , A i : R n ⇒ R n is maximal monotone. zer ( � i A i ) � = ∅ . Jingwei Liang, DAMTP Introduction to Non-smooth Optimisation March 13, 2019

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend