introduction to theia and low energy neutrino program
play

Introduction to THEIA and low-energy neutrino program 70m 18m - PowerPoint PPT Presentation

Introduction to THEIA and low-energy neutrino program 70m 18m MooD Workshop T HEIA25 BNL, Nov 12, 2019 20m Michael Wurm (JGU Mainz) for the THEIA proto-collaboration What is THEIA? Enhanced sensitivity to broad physics program


  1. Introduction to THEIA and low-energy neutrino program 70m 18m MooD Workshop T HEIA25 BNL, Nov 12, 2019 20m Michael Wurm (JGU Mainz) for the THEIA proto-collaboration

  2. What is THEIA? → Enhanced sensitivity to broad physics program scintillation Novel target medium: Water-based Liquid Scintillator Long-Baseline Oscillations Cherenkov Solar neutrinos Supernova neutrinos Novel light sensors: Diffuse SN neutrinos LAPPDs, dichroicons Large volume detector Neutrinoless able to exploit both Double-Beta Decay Cherenkov+Scintillation signals Novel reconstruction techniques THEIA 2

  3. THEIA Technology → how to generate (and preserve!) scintillation and Cherenkov photons? scintillation Attenuation length (m) 125 Cherenkov Water (SK,SNO) 100 WbLS mycels 75 Water-based Liquid Scintillator Water-like Oil-like 50 § >70% water § loading of § Cherenkov+ hydrophilic o scintillation elements t t n e r a p s § cost-effective n a ! r s t n y o t l t o n e h 25 i p c i v f f o u k S n Scintillator e r e h C t c a r Borexino t x e KamLAND 0 10 2 10 3 10 4 Photon yield (MeV) → target medium can be adjusted to physics goals! Michael Wurm (Mainz) THEIA 3

  4. THEIA Technology → how to generate (and preserve!) scintillation and Cherenkov photons? scintillation Cherenkov → how to separate the Cherenkov/scintillation signals? Timing Spectrum Angular distribution “instantaneous chertons” UV/blue scintillation vs. increased PMT hit density vs. delayed “scintons” blue/green Cherenkov under Cherenkov angle → ns resolution or better → wavelength-sensitivity → sufficient granularity Michael Wurm (Mainz) THEIA 4

  5. THEIA Technology → how to generate (and preserve!) scintillation and Cherenkov photons? scintillation Cherenkov → how to separate the Cherenkov/scintillation signals? Timing Spectrum Angular distribution “instantaneous chertons” UV/blue scintillation vs. increased PMT hit density vs. delayed “scintons” blue/green Cherenkov under Cherenkov angle → ns resolution or better → wavelength-sensitivity → sufficient granularity Dichroic filters LAPPDs: ~ 60ps timing Standard PMTs → talk by Tanner Kaptanoglu Michael Wurm (Mainz) THEIA 5

  6. THEIA Technology → how to generate (and preserve!) scintillation and Cherenkov photons? scintillation Cherenkov → how to separate the Cherenkov/scintillation signals? Large Area Picosecond Photon Detectors Timing § Area: 20-by-20 cm 2 “instantaneous chertons” vs. delayed “scintons” § Amplification of p.e. by two MCP layers → ns resolution or better § Flat geometry: ultrafast timing ~65ps § Strip readout: spatial resolution ~1cm § Commercial production by Incom, Ltd. LAPPDs: ~ 60ps timing Michael Wurm (Mainz) THEIA 6

  7. THEIA R&D and friends ANNIE @ Fermilab BNB Selected examples of on-going R&D: → demonstrator for LAPPDs CHESS setup at UC Berkeley: → WbLS upgrade foreseen Image Cherenkov rings from WbLS + C/S timing timing in rings → Dichroicons at U.Penn Simultaneous but discriminating detection of chertons & scintons → talk by T. Kaptanoglu WATCHMAN-AIT Toplogical reconstruction at U.Hamburg → test of Using (Wb)LS volume as THEIA-related “photon TPC“ by tracking technologies back photons for enhanced emission probability → talk by Adam Bernstein ß 0.5GeV µ in WbLS+LAPPDs THEIA 7

  8. THEIA25 as the Module of Opportunity 70m Detector specifications 18m § Total mass: 25 kt of WbLS T HEIA25 § Fiducial mass: 17-20 kt (depends on physics) 20m § Photosensors in Phase 1 (LBL): 22,500x 10’’ PMTs → 25% coverage w/ high QE 700x 8’’ LAPPDs → 3% coverage → equals the current photon collection of SK! § Background levels: Radiopurity (H 2 O): ~10 -15 g/g in 238 U, 232 Th, 40 K Rock shielding: 4300 m.w.e. → muon flux only ~10% of LNGS Michael Wurm (Mainz) THEIA 8

  9. THEIA25 : Staged Approach 70m 18m T HEIA25 Physics Goals 20m § Long-Baseline Oscillations Staged Approach § Proton decay → K + ν/π 0 e + Phase 1 Long-baseline neutrinos (LBNF) § Supernova neutrinos with ”thin” WbLS (1-10%) § Diffuse SN neutrinos Phase 2 Low-energy neutrino § Solar neutrinos observation with “oily” LS § Geoneutrinos Phase 3 multi-ton scale 0 νββ search with loaded LS in suspended vessel νββ search § 0 νβ and added photocoverage on <10meV scale Michael Wurm (Mainz) THEIA 9

  10. WbLS: Impact on MeV neutrino detection Michael Wurm (Mainz) THEIA 10

  11. Supernova Neutrinos Galactic Supernovae (10kpc): Expected events: ~5,000, mostly ) 𝝃 𝒇 ‘s from IBD § complementary to 𝜉 - signal in argon § Same location: compare Earth matter effects § Provide fast trigger for Lar TPCs, especially for far-off Supernovae (LMC: ~200 ev. In THEIA) Reconstructing Entries Entries 600 600 c c 2 2 / ndf / ndf eES 200 380.6 / 1795 380.6 / 1795 ES electron ± ± norm norm 110 110 10.24 10.24 q q ° ° ± ± ( ( ) ) 0.5753 0.5753 1.239 1.239 Detection channels can be separated due to IBD 4000 f f ° ° ± ± direction ( ( ) ) 0.8371 0.8371 1.193 1.193 s s ° ° ± ± ( ( ) ) 10.6 10.6 0.8488 0.8488 tag eff. 90% ± ± const. const. 0.3462 0.3462 0.02005 0.02005 neutron & delayed decay tags θ 0 0.57 ± 1.24 ϕ 0 0.84 ± 1.19 § some all-flavor ( ν e + ν µ + ν τ ) information 9 8 from NC reactions on oxygen 7 6 5 § Enhanced SN pointing: ∼ 2° based on ES 4 3 with IBD background subtraction 2 150 1 ° ) ( 100 f 0 D 50 80 D q 60 0 ° ( 40 ) - 20 50 0 - - 20 100 - 40 - - 60 150 - 80 Michael Wurm (Mainz) THEIA 11

  12. Diffuse Supernova Neutrino Background DSNB detection: Cherenkov/scintillation ratio for BG discrimination § Low-flux 𝒫 (10 2 cm -2 s -1 ) ̅ 𝜉 - signal → detectable by IBD: ~2 ev. per 10 kt ∙ yrs § Requires efficient BG discrimination, especially to atmospheric ν NC interactions § In THEIA: NC BG data by ANNIE! o ring counting: o Cherenkov/scintillation ratio o delayed decay tags Signal/BG spectra and observation window → signal efficiency: 95% → residual background: 1.7% very clean measurement cf. JUNO & SK-Gd THEIA25: 5 IBDs over 2.7 BG per year → 5 σ discovery after 6 years Michael Wurm (Mainz) THEIA 12

  13. Solar neutrinos Objectives: § Precise measurement of CNO neutrino flux stellar physics, solar metallicity § Spectral upturn of low-energy 8 B neutrinos matter effects, BSM physics? → require efficient BG discrimination and sufficient light yield in 1-3 MeV range § THEIA25: 2D directional & spectral fit → CNO flux at 10% level after 5 yrs R. Bonventre, G.D. Orebi Gann, Eur. Phys. J. C (2018) 78:435 Spectral fit (cf. Borexino) Directional fit (cf. Super-Kamiokande) Michael Wurm (Mainz) THEIA 13

  14. Neutrinoless double-beta decay Insertion of subvolume holding 1.8kt of organic scintillator (LAB+PPO) Sensitivity (90% CL) from spectral fit: loading: -- 3% enriched Xe (89.5%) § Te: T 1/2 > 1.1x10 28 yrs, m ββ < 6.3 meV -- 5% natural Te (~90t) § Xe: T 1/2 > 2.0x10 28 yrs, m ββ < 5.6 meV enhanced 1200 pe/MeV (cf. JUNO) [eV] photo-cov. → 3% energy resolution - b 1 10 b discovery sensitivity on m Energy spectrum (ROI) - 2 10 s 3 LEGEND-1000 CUPID CUPID-reach SNO+II PandaX-III-1000 KamLAND2-Zen nEXO CUPID-1T Theia-Te NEXT-BOLD Theia-Xe NEXT-HD Plot by Yu. G. Kolomensky using methodology from Agostini, Benato, Detwiler: PhysRevD.96.053001 Michael Wurm (Mainz) THEIA 14

  15. THEIA Whitepaper online! arXiv:1911.03501 THEIA proto-collaboration: groups from 35+ institutions and eight countries (CA, CN, DE, FI, IT, KR, UK, US) Read more on: § Detector technology § Low energy neutrinos, e.g. geoneutrinos § Nucleon decay § LBL oscillations Mike Wilking’s talk 15

  16. Backup Slides 70m 18m T HEIA25 20m 16

  17. Supernova neutrino pointing Toy-MC study § Realistic kinematics for ES § Flat for IBD (conservative) § “canonical“ SN model (used for JUNO) § eES events: 200 in 20kt § IBD events: 4000 § IBD tagging efficiency: 0% → 90% → 100% § Angular resolution (at 10MeV+) 10° → 15° → 20° § Results of a 2D analytical fit: IBD tag Angular resolution efficiency 10° 15° 20° 0% 1.55 1.55 2.05 90% 1.75 1.95 2.55 100% 2.95 5.45 11.35

  18. DSNB – spectrum before cuts visible scintillation energy (MeV) 0 5 10 15 20 25 30 35 40 45 100 p.e.) DSNB 3 Reactor BG 10 AtmCC BG AtmNC BG 2 10 Li9 BG ´ events /(100 ktyr FastN BG 10 1 - 1 10 - 2 10 ´ 3 10 - 3 10 0 1 2 3 4 5 6 scintillation p.e.

  19. DSNB Ring Counting AtmNC events visible scintillation energy (MeV) 0 5 10 15 20 25 30 35 350 One-Ring 300 Multi-Ring No-Ring 250 200 150 100 50 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 scintillation p.e.

  20. DSNB C/S ratio background rejection Background Reduction [%] 1 2 3 4 5 6 7 8 9 yr) S+B 26 3.6 ´ DSNB Rate /(100 kt 24 3.5 S/ 22 3.4 3.3 20 3.2 18 3.1 16 3.0 14 2.9 12 2.8 82% signal efficiency 10 5 5 10 10 15 15 20 20 25 25 30 30 35 35 ´ AtmNC Rate /(100 kt yr)

  21. DSNB Delayed decay tags ß taggable ß taggable

  22. DSNB Signal and Background Rates

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend