introduction to quantitative xrf analysis
play

Introduction to Quantitative XRF analysis Andreas - Germanos - PowerPoint PPT Presentation

Introduction to Quantitative XRF analysis Andreas - Germanos Karydas NSIL- Nuclear Science and Instrumentation Laboratory International Atomic Energy Agency ( IAEA ) IAEA Laboratories , A-2444 Seibersdorf, Austria A.Karydas@iaea.org A.G. Karydas,


  1. Introduction to Quantitative XRF analysis Andreas - Germanos Karydas NSIL- Nuclear Science and Instrumentation Laboratory International Atomic Energy Agency ( IAEA ) IAEA Laboratories , A-2444 Seibersdorf, Austria A.Karydas@iaea.org A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  2. Outline • Basic mechanisms for ionization/fluorescence process • Primary XRF Intensity • Indirect enhancement processes of XRF intensity • XRF analysis in the real world: - Non-parallel exciting beams - Influence of surface topography - Geometrical considerations - Particle size effects A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  3. Interaction of X-rays with atoms  , x I I 0 Cross section              x I I e R C 0 Energy A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  4. Photoelectric cross sections K-shell Photoelectric cross sections 6 10 I onization Cross Section / barn 10 4 -10 5 b Na Photon ICS from Si 5 Cl 10 “Elam database” Ca V Fe Elam W.T. et al., Zn Rb Radiat. Phys. 4 Rh 10 Chem, 63, (2002) , 121 Photoelectric 3 10 cross section: � ~ Ε ��.� 2 10 � ~ Ζ � �� � 1 10 20 30 Energy / KeV A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  5. X-ray Scattering Interactions with atoms E 0 >>Binding Energy E i < E 0 : Incoherent E i =E 0 : Coherent (Rayleigh), (Compton), mostly with mostly with inner atomic outer, less bound electrons electrons A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  6. Scattering probabilities: Unpolarized excitation Z WF Coherent scattering (%) Al 8.4 Si 26.7 Ca 9.3 Fe 9.8 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  7. Scattering probabilities: Unpolarized excitation Z WF Coherent scattering (%) Al 8.4 Incoherent Si 26.7 scattering Ca 9.3 Fe 9.8 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  8. Scattering probabilities: Polarized radiation Scattering probability ~ sin 2 α α=angle between electric field vector of the incident radiation with the propagation direction of the scattered radiation Gangadhar et al. JAAS, 2014 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  9. Working principle: X-Ray Fluorescence Analysis E 0 Working principle: Incident photon 1) Photo -Ionization Energy E 0 of atomic bound should be electrons Kα adequate to (K, L, M) ionize the / Photoelectric atomic L Κ M absorption bound Nucleus electrons 2) Electronic transition >= Electron amd emission Atomic shell of element Binding ‘ characteristic’ energy fluorescence radiation A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  10. De-excitation of atoms: Competitive processes Fluorescence emission f : Coster-Cronig (intra-shell)  Lij : K-shell fluorescence yield K transition probabilities from the i to the j L subshell A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  11. De-excitation: Fluorescence/Auger yield Auger probability 1.0 Fluorescence/Auger Yield 0.8 0.6 Fluorescence probability 0.4 0.2 0.0 0 20 40 60 80 Atomic Number A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  12. Emission of element ‘characteristic’ x-rays K - alpha lines: L shell e- transition to fill vacancy in K shell. Most frequent transition, hence most intense peak K - beta lines: M shell e- transitions to fill vacancy in K shell. L - alpha lines: M shell e- transition to fill vacancy in L shell. E Kα1 = U K - U L3 L 3 to K shell L - beta lines: N shell e- transition to fill vacancy in L shell. Each element has a unique set of emission energies A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  13. XRF cross sections: K- Emission  KX E ( ) XRF K-shell fluorescence cross section, o       ( E ) ( E ) F KX o K o K KX  K E ( ) : K-shell photoelectric cross section ( cm 2 /g or barns/atom ) o  : K-shell fluorescence yield K f : Transition probability for Kα emission KX A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  14. XRF cross sections: L- Emission Example: Incident energy E o >U L1       ( E ) ( E ) ( Z ) f ( Z ) L 1 X o L 1 o L 1 i L 1 X i          ( E ) ( f ) ( Z ) f ( Z ) L 2 X o L 2 L 1 L 12 L 1 i L 2 X i              ( E ) ( f f f ) ( Z ) f ( Z ) L 3 X o L 3 L 2 L 23 L 12 L 1 L 13 L 3 i L 3 X i f : Coster-Cronig (intra-shell) transition probabilities from the i to the j L subshell Lij A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  15. XRF cross sections: L- Emission L 3 M 5 (Au) Partial photoelectric cross L 2 M 4 (Au) sections versus jump ratio approximation L 1 M 3 (Au) KL 3 (Fe) A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  16. XRF cross sections: L- Emission Honicke et al, PRL 113, 163001 (2014) A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  17. Fluorescence Kα, Lα cross sections Optimization of Cross section (b) the exciting beam energy for maximizing the characteristic X- ray intensity 20 30 40 50 60 80 Atomic Number A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  18. Primary Fluorescence intensity: Assumptions • Parallel incident beam • D.K.G. de Boer, XRS, 19(1990) 145 • M. Mantler, in Handbook of Practical • Infinite surface for sample XRFA, Edited by B. Beckhoff et al . • Beam cross section infinite • Homogenous sample • Flat surface of the sample A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  19. Primary Fluorescence intensity: Assumptions • Parallel incident beam • D.K.G. de Boer, XRS, 19(1990) 145 • M. Mantler, in Handbook of Practical • Infinite surface for sample XRFA, Edited by B. Beckhoff et al . • Beam cross section infinite • Homogenous sample • Flat surface of the sample A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  20. Primary Fluorescence intensity  Number of I Solid angle of d : 0 incident 4  detection ( sr ) j=1,N number of elements Photons/s Intrinsic efficiency of  d E ( ) :   i X-ray detector; E i 1 2 e    ( E ) x / sin e    s i k 2 ( E ) x / sin x s o k 1 k d dx k     c ( E , E ) dx / sin i i o i k 1 (Concentration of i element) X (Fluorescence cross section; cm 2 /g) X (areal density; g/cm 2 )   s E ( ) :  c  ( E ) Sample mass attenuation coefficient for energy Eo o j j o  j 1 , N  dx           ( E ) x / sin     ( E ) x / sin   dI ( E ) I e c ( E , E ) k e d ( E ) s o k 1 s i k 2 i i o i i o i d i    sin 4 1       ( E , E ) ( E ) / sin ( E ) / sin  T o i s o 1 s i 2 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  21. Primary Fluorescence intensity: Calibration     ( E , E ) d  1 e 1 T o i          I ( E ) I ( E , E ) c d ( E ) i i o i o i i d i     ( E , E ) sin 4 T o i 1 S ( E , E ) Sensitivity i o i 1 Thick target      d  I ( E ) S ( E , E ) c ( E , E ) 1 i i i o i i  T o i approximation ( E , E ) T o i      d  I ( E ) S ( E , E ) c d ( E , E ) 1 Thin target i i i o i i T o i Different approaches are followed depending on how well the set-up geometry and incident beam intensity are characterized:  Sensitivity calibration: certified pure element/compound targets  Solid angle calibration: Normalized beam intensity, detector efficiency known, well certified pure element/compound targets  Standard-less XRFA: Calibrated apertures, distances, detector response function versus energy, incident beam intensity A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  22. Indirect Enhancement Processes in Fluorescence Emission J. Fernandez et al ., X-Ray Spectrom. 2013, 42, 189–196 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  23. Indirect Enhancement Processes in Fluorescence Emission J. Fernandez et al ., X-Ray Spectrom. 2013, 42, 189–196 A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

  24. Secondary Fluorescence Enhancement Exciting x-ray beam X-ray Detector Ε ο Ε i sample Ε i Sample j Ε j Energy condition: i Ε j >U x,i i Element j characteristic x-ray(s) can excite element i characteristic x-rays within the sample volume A.G. Karydas, ICTP-IAEA School, Trieste, 18 th November 2014

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend