Multi-scale problems β‘ β€ β β β β 2 2 2 2 οΏ½ p e p = β + 1 ; β’ O β₯ β β β β H Ο 2 2 2 2 2 2 4 β’ β₯ β β β β m r m c m c r β£ β¦ e e e βΌ H r R β β 2 2 οΏ½ e ( ) β βΌ atom β β οΏ½ E R 2 Ο 2 4 βΌ β β m R R p e R ( ) 2 1 οΏ½ dE R e Ξ± β‘ β = = οΏ½ 1 0 R Ο Ξ± 4 οΏ½ 137 c dR m c e m c = 2 0.5 MeV Ξ± e Three Ξ± = 2 βΌ 3.6 keV p c m c e Ξ± scales 2 1 p β Ξ± = 2 2 βΌ βΌ 13.6 eV E m c 2 2 e m e (from now on, units such that ) = = 6/2/2009 v. Kolck, Intro to EFTs 9 οΏ½ 1, 1 c
PDG, 2005 Howeverβ¦ no obvious small coupling in nuclear forces. 0.3 QCD Ξ± s ( Β΅ ) βfine-structureβ 0.2 constant 0.1 0 2 Needed: method that does not 1 10 10 Β΅ GeV rely on small couplings EFFECTIVE FIELD THEORY 6/2/2009 v. Kolck, Intro to EFTs 10
I do not believe that scientific progress is always best advanced by keeping an altogether open mind. It is often necessary to forget oneβs doubts and to follow the consequences of oneβs assumptions wherever they may lead ---the great thing is not to be free of theoretical prejudices, but to have the right theoretical prejudices. And always, the test of any theoretical preconception is in where it leads. S. Weinberg, The First Three Minutes 1972 6/2/2009 v. Kolck, Intro to EFTs 11
Ingredients οΏ½ Relevant degrees of freedom 6/2/2009 v. Kolck, Intro to EFTs 12
Seurat, La Parade (detail) 6/2/2009 v. Kolck, Intro to EFTs 13
Ingredients οΏ½ Relevant degrees of freedom choose the coordinates that fit the problem οΏ½ All possible interactions 6/2/2009 v. Kolck, Intro to EFTs 14
Example: Earth-moon-satellite system R οΏ½ 1.7 Mm R οΏ½ 6.4 Mm d οΏ½ 384 Mm m E Wikipedia 2-body forces οΏ½ 2+3-body forces change in resolution 6/2/2009 v. Kolck, Intro to EFTs 15
Ingredients οΏ½ Relevant degrees of freedom choose the coordinates that fit the problem οΏ½ All possible interactions what is not forbidden is compulsory οΏ½ Symmetries 6/2/2009 v. Kolck, Intro to EFTs 16
A farmer is having trouble with a cow whose milk has gone sour. He asks three scientistsβa biologist, a chemist, and a physicistβto help him. The biologist figures the cow must be sick or have some kind of infection, but none of the antibiotics he gives the cow work. Then, the chemist supposes that there must be a chemical imbalance affecting the production of milk, but none of the solutions he proposes do any good either. Finally, the physicist comes in and says, βFirst, we assume a spherical cowβ¦β οΏ½ οΏ½ β + β Ξ± β β δα u v u v u v ij i j ij i j ij ij no, say, δα οΏ½ 1 u v 1 2 ij amenable to perturbation theory 6/2/2009 v. Kolck, Intro to EFTs 17
Ingredients οΏ½ Relevant degrees of freedom choose the coordinates that fit the problem οΏ½ All possible interactions what is not forbidden is compulsory οΏ½ Symmetries not everything is allowed οΏ½ Naturalness 6/2/2009 v. Kolck, Intro to EFTs 18
βt Hooft β79 After scales have been identified, the remaining, dimensionless parameters are ( ) 1 O cow unless suppressed by a symmetry non-sphericityβ¦ Occamβs razor: simplest assumption, to be revised if necessary fine-tuning energy of probe E Expansion in powers of energy scale of E und underlying theory 6/2/2009 v. Kolck, Intro to EFTs 19
A classical example: the flat Earth -- light object near surface of a large body d.o.f.: mass m β‘ βΌ οΏ½ E m h g E m gR ( ) ( ) = sym: , , und h V h x y V h eff eff β { } (neglecting β ( ) = = + + Ξ· 2 + const β¦ i V h m g h m g h h quantum eff i = 0 correctionsβ¦) i parameters + 1 β β i g m g h E h ( ) ( ) = + = Γ = Γ naturalness: O 1 1 1 O O β β i g + 1 i β β i i R m g h E R i und R β 1 β i β 1 β β β β 1 i g G M ( ) β ( ) = β + = β = 1 i β β β β V h G M m m h g 1 + 2 eff i β β β β i R h R R R = 0 i β‘ οΏ½ h R g M itself the first term in a low-energy EFT of general relativityβ¦ 6/2/2009 v. Kolck, Intro to EFTs 20
Going a bit deeperβ¦ A short path to quantum mechanics 2 2 = + = + + P A A P A A A a 1 2 1 2 3 sum over all paths b Path Integral Feynman β48 β β b ( ) β« β exp ( ( )) β L β A i dt q t = β« β« exp ( ( )) L A Dq i dt q t i RULE β β a each path contributes a phase ββ« ( ) dq t given by the classical action i i 6/2/2009 v. Kolck, Intro to EFTs 21
q ( ) q t + 2 i n ( ) q t + i n EFFECTIVE THEORY ( ) q t i οΏ½ t t + t + t + t scale of fine-structure 1 2 i i i n i n of underlying curve 1 M und scale of variation 1 m of curve coarse-graining scale t t + t + 1 j j 2 j (cutoff) 1 Ξ 2 1 ( ) ( ) dq d q ( ) β L ( ) + β + β¦ + β 2 L ( ) ( ) q t q t t t t t i i 2 i i 2 dt dt 6/2/2009 v. Kolck, Intro to EFTs 22 t t i i
QM + special relativity: quantum field theory οΏ½ β Ο β‘ Ο ( ) ( , ) ( ) q t r t x β β‘ 3 4 dt dt d r d x β d β β x ΞΌ dt EFFECTIVE FIELD THEORIES 6/2/2009 v. Kolck, Intro to EFTs 23
Partition function ( ) { } β« β« = Ο Ο + Ο 4 exp ( ) ( ) L L Z D i d x free int { } ( ) 2 β‘ β€ β« β« β« β« = Ο + Ο + Ο + Ο 4 4 4 1 ( ) ( ) β¦ exp ( ) L L L D i d x i d x i d x β£ β¦ int int free momentum space (skip many stepsβ¦) Ξ» Ο i = = 4 = i Ξ» L β + i Ξ΅ int 2 2 4 p m ' ' p p 1 2 4 d l i i β« = Ξ» Ξ» i i Ο + β + Ξ΅ β β + Ξ΅ 4 2 2 2 2 (2 ) ( ) ( ) p l m i p l m i β 1 2 + p l p l 2 1 = β¦ p p 1 2 6/2/2009 v. Kolck, Intro to EFTs 24
Euler + Heisenberg β36 Weinberg β67 β¦ β79 What is Effective? Wilson, early 70s E β¦ ( ) Ο > H Q M ( ) β« β« β« = Ο Ο Ο Ο 4 exp ( ) L Z D D i d x M , H L und H L Ξ ( ) β« Γ Ο Ξ΄ Ο β Ο ( ) D f ( ) Ο < Ξ Q M L L ( ) β« β« m = Ο Ο 4 exp ( ) L D i d x EFT β ( ) = β β Ξ β Ο ( , ) ( , ) d L n c M O m EFT i i = 0 ( , ) d i d n 1 1 Ο Ξ < βΌ : x H Q M β renormalization-group local Z βΞ = 0 1 1 invariance Ο Ξ > : βΌ x L Q M details of the 6/2/2009 v. Kolck, Intro to EFTs 25 underlying symmetries underlying dynamics
characteristic external momentum Ξ½ Ξ β β‘ β€ β β Q Q β β οΏ½ β = Ξ ( ) ( ) ~ ( ) ( ) ; β β T T Q N M c F β’ β₯ Ξ½ Ξ½ , , i i β£ β¦ β β M m m Ξ½ Ξ½ = i min β normalization T non-analytic, βΞ = 0 from loops Ξ½ = Ξ½ ( , , β¦ ) βpower countingβ d n e.g. # loops L For Q ~ m , truncate consistently with RG invariance so as to allow systematic improvement (perturbation theory): β β Ξ½ + 1 Ξ½ β β β ( ) β β Q T Q Ξ½ = + = Ξ½ ( ) ( ) β β O O β β β β T T N T β β β Ξ Ξ β β ln β β M β β 6/2/2009 v. Kolck, Intro to EFTs 26
Why is this useful? Ο Because in general the appropriate degrees of freedom below M ( ) are not the same as above Ο = Ο Ο , H L Examples: Ο Ο Ο Ο L L M is mass of physical particle -- οΏ½ c Ο i virtual exchange in coefficients Ο Ο c Ο Ο H i L L (Appelquist-Carazzone decoupling theorem) M is scale associated with breaking of continuous symmetry -- οΏ½ appearance of massless Goldstone bosons or gauge-boson mass (Goldstoneβs theorem, Higgs mechanism) M is scale of confinement -- rearrangement of whole spectrum οΏ½ M is radius of Fermi surface -- BCS behavior οΏ½ 6/2/2009 v. Kolck, Intro to EFTs 27
How can we do it? Two possibilities: οΏ½ know and can solve underlying theory -- ( ) get βs in terms of parameters in Ο Ο L , c i und H L οΏ½ know but cannot solve, or or do not know, underlying theory -- use Weinbergβs βtheoremβ: Weinberg β79 βThe quantum field theory generated by the most general Lagrangian with some assumed symmetries will produce the most general S matrix incorporating quantum mechanics, Lorentz invariance, unitarity, cluster decomposition and those symmetries, with no further physical content.β Note: proven only for scalar field with symmetry in , Ball + Thorne β94 Z E 2 4 but no known counterexamples 6/2/2009 v. Kolck, Intro to EFTs 28
Biraβs EFT Recipe 1. identify degrees of freedom and symmetries what is not forbidden 2. construct most general Lagrangian is mandatory! 3. run the methods of field theory Q < Ξ β’ compute Feynman diagrams with all momenta (βregularizationβ) ( ) , c Ξ Ξ Ξ β’ relate to observables, which should be independent of i (βrenormalizationβ) not a model form factor Q ( ) controlled expansion in M Γ O 1 βnaturalnessβ: what else? unless suppressed by symmetryβ¦ contrast to models, which have fewer, but ad hoc, interactions; useful in the identification of relevant degrees of freedom and symmetries, but plagued with uncontrolled errors 6/2/2009 v. Kolck, Intro to EFTs 29
A significant change in physicistsβ attitude towards what should be taken as a guiding principle in theory construction is taking place in recent years in the context of the development of EFT. For many years (β¦) renormalizability has been taken as a necessary requirement. Now, considering the fact that experiments can probe only a limited range of energies, it seems natural to take EFT as a general framework for analyzing experimental results. T.Y. Cao, in Renormalization, From Lorentz to Landau (and Beyond), L.M. Brown (ed) 1993 6/2/2009 v. Kolck, Intro to EFTs 30
Time for a paradigm change, perhaps? 6/2/2009 v. Kolck, Intro to EFTs 31
condensed-matter physics and beyond molecular atomic physics nuclear physics Chiral EFT 0.1 physics NRQED ? 1 The world QCD (2 or 3 flavors) as an onion 2 10 QED QCD (6 flavors) Fermi Th Electroweak Th 15 10 + higher-dim ops (SUSY) 19 GUT? 10 General Relativity + higher-curvature terms ? 10 β 10 β 10 β 10 β 1 20 16 (fm) 3 1 r (GeV) E 6/2/2009 v. Kolck, Intro to EFTs 32
A quantum example: non-relativistic QED (NRQED) single fermion Ο of mass M , massless spin-1 boson A ΞΌ Lorentz, parity, time-reversal, and U(1) gauge invariance = β β D ieA ΞΌ ΞΌ ΞΌ = β β β F A A ΞΌΞ½ ΞΌ Ξ½ Ξ½ ΞΌ 1 ( ) ΞΌΞ½ = Ο β Ο β L iD M F F ΞΌΞ½ und 4 Ξ½ β Ξ· i i = p ΞΌΞ½ = p β + i Ξ΅ + Ξ΅ p M 2 p i ΞΌ ΞΌ 1 perturbation β = ΟΞ± = Ξ³ interactions 4 βΌ e ie theory ΞΌ 3 How do E&M bound states arise? 6/2/2009 v. Kolck, Intro to EFTs 33
οΏ½ Q M οΏ½ οΏ½ ( ) 0 Ξ³ 0 β β Ξ³ + + i p p q M i = = οΏ½ οΏ½ ( ) + β + Ξ΅ 2 ( ) 2 + β + β + Ξ΅ p q M i 0 0 2 p q p q M i + p q οΏ½ οΏ½ ( ) Ξ³ + β β Ξ³ + 0 0 i p M p q = οΏ½ οΏ½ οΏ½ + β β β + Ξ΅ 0 0 02 2 2 2 p q q p q q i q p ( ) + Ξ³ 0 1 i οΏ½ οΏ½ = + ( ) β¦ = βΌ O p q Q + Ξ΅ 0 2 q i οΏ½ ( ) 0 = = O q q Q Β± Ξ³ β β 0 1 2 οΏ½ Q = = β‘ , 0 0 = 2 + 2 = + P P P P P O β β P p p M M Β± Β± Β± Β± β Β± 2 β β M Β± projector onto energy states Georgi β90 βheavy-fermion ( ) ( ) Ξ¨ β‘ P Ο Ο = + Ο = β Ξ¨ + Ξ¨ i M t i M t e P P e formalismβ Β± Β± + β + β particles: annihilates creates antiparticles: creates annihilates 6/2/2009 v. Kolck, Intro to EFTs 34
οΏ½ οΏ½ οΏ½ ( οΏ½ ) 1 ( ) = Ξ¨ Ξ¨ β Ξ¨ Ξ³ β Ξ¨ + Ξ¨ Ξ³ β Ξ¨ β Ξ¨ + Ξ¨ β F F ΞΌΞ½ 2 L iD i D i D i D M + + β + + β β β ΞΌΞ½ 0 0 und 4 + other, heavy d.o.f.s ( ) ( ) β« β« β« β« β« = Ξ¨ Ξ¨ 4 Ξ¨ Ξ¨ Γ Ξ¨ Ξ΄ Ξ¨βΞ¨ exp ( , ) L Z DA D D i d x A D + β + β + , und ( ) complete square, β« β« β« = Ξ¨ Ξ¨ 4 exp ( , ) L DA D i d x A do Gaussian integral EFT οΏ½ 1 1 e = Ξ¨ Ξ¨ + Ξ¨ Ξ¨ + Ξ¨ Ο Ξ¨ Ξ΅ + β ΞΌΞ½ + 2 β¦ β¦ L jk i D D F F F ΞΌΞ½ 0 EFT i ijk 2 2 4 M M non-relativistic expansion Pauli term ΞΊ e + Ξ¨ Ο Ξ¨ Ξ΅ + β¦ jk F i ijk 2 M most general Lag with Ξ¨, A anomalous magnetic moment invariant under U(1) gauge, parity, time-reversal, =O(1) and Lorentz transformations 6/2/2009 v. Kolck, Intro to EFTs 35
1 ( ) ( ) a b 2 2 οΏ½ ΞΌΞ½ ΞΌΞ½ ΞΌΞ½ = β + + + β¦ L F F F F F F ΞΌΞ½ ΞΌΞ½ ΞΌΞ½ 4 4 EFT 4 M M Euler + Heisenberg β36 Ο Ξ½ Ξ½ β Ξ· i p { ΞΌΞ½ p [ ] } = 3 i p β‘ β€ 2 = Ξ· Ξ· β β + + β¦ β¦ a p p p p b + Ξ΅ 2 β£ β¦ p p p i ΞΌΟ Ξ½Ο 1 3 2 4 4 4 1 ΞΌ M ΞΌ Ο ( ) 1 e ( ) ( ) 2 ΞΌΞ½Ξ±Ξ² +Ξ¨ β Ξ¨ + Ξ¨ β β 2 Ξ¨ + + ΞΊ Ξ¨ Ξ¨ Ξ΅ + β¦ 1 iv D v D D v S F Ξ± Ξ² ΞΌΞ½ 2 M M οΏ½ ( ) v β‘ 1,0 ΞΌ i = οΏ½ p = ( ) 1 Ο iev ΞΌ β β ( ) 2 β + β β + + Ξ΅ 2 β¦ β‘ β v p p v p i 0, 2 β S 2 M β β Ξ½ p β² ΞΌ 2 { } ( ) e e ( ) ( ) = Ξ· β = + + + ΞΊ Ξ΅ Ξ½ Ξ± Ξ² ' 2 1 i v v i p p v S q ΞΌΞ½ ΞΌ Ξ½ ΞΌΞ½Ξ±Ξ² ΞΌ 2 M M ΞΌ p q Ξ³ Ξ³ (0) (1) + ΨΨ ΨΨ + Ξ¨ Ξ¨ β Ξ¨ Ξ¨ + β¦ 0 0 S S 2 2 M M ( ) i etc. = Ξ³ (0) + Ξ³ (1) β 6/2/2009 v. Kolck, Intro to EFTs 36 S S 0 0 1 2 2 M
Various processes at low energies: e.g. = + β¦ T light-by-light scattering Ξ³Ξ³ no explicit fermion-antifermion pair creation! + β¦ = + + Compton scattering T Ξ³Ο no change in Thompson limit heavy-fermion number! 6/2/2009 v. Kolck, Intro to EFTs 37
Back to atomic bound states: the NRQED perspective οΏ½ β οΏ½ ( ) ( ) 0 0 ' , ' ' , ' p p p p = + + + β¦ T ΟΟ οΏ½ β οΏ½ ( ) ( ) 0 , 0 , CoM p p p p frame + + β¦ + οΏ½ οΏ½ ( ) = βΌ ' O p p Q Q β β 2 higher powers of Q 0 0 = βΌ ' O β β p p M β β M β 2 2 2 2 ie ie ie e = = οΏ½ βΌ οΏ½ οΏ½ οΏ½ οΏ½ ( ) ( ) ( ) 2 2 2 ( ) 2 β + Ξ΅ 2 β β Ξ΅ ' ' 0 β 0 β β + Ξ΅ Q ' ' p p i p p i p p p p i 2 e ( ) β = V r Ο 4 r 6/2/2009 v. Kolck, Intro to EFTs 38
2 ( 1 ( 4 + 0 0 , 1 1 0 + 0 ' , d l p l p l β« = 4 οΏ½ οΏ½ e οΏ½ οΏ½ οΏ½ οΏ½ ( ) ) οΏ½ ) 4 + β οΏ½ 2 2 Ο ( ) ( ' ) 2 l p l p + β + ' + β + Ξ΅ + β + Ξ΅ 0 0 0 0 p l ' p l l p i l p i 2 2 οΏ½ M M ( ) 3 0 , 4 l l 1 1 οΏ½ οΏ½ ( ) οΏ½ οΏ½ ( ) 2 2 02 β 2 + Ξ΅ 0 β 0 + 0 β β + + Ξ΅ l l i ' ' p p l p p l i 0 l 3 1 1 d l β« = 4 οΏ½ οΏ½ οΏ½ οΏ½ ie ( ) οΏ½ οΏ½ 3 + β 2 2 Ο ( ) ( ' ) 2 l p l p β 0 + β Ξ΅ β 0 + β Ξ΅ ' l p i l p i 2 2 3 4 M M 1 2 4 3 1 1 4 οΏ½ οΏ½ οΏ½ ( ) ( ) οΏ½ οΏ½ 2 2 β Ξ΅ 2 β β β β + + Ξ΅ 0 0 l i ' ' p p l p p l i 2 Q M + 3 β¦ Q Q Ξ± 3 2 1 1 1 1 Q e 4 βΌ βΌ e just as expectedβ¦ ( ) Ο 2 2 2 Ο 4 4 Q Q Q Q Q 6/2/2009 v. Kolck, Intro to EFTs 39
2 1 4 ( 1 1 ( d l + β« 0 0 , 0 β 0 , = 4 οΏ½ οΏ½ p l p l οΏ½ οΏ½ e ( ) 4 + + 2 2 Ο ( ) ( ) οΏ½ 2 οΏ½ ) l p l p οΏ½ ) οΏ½ 0 + 0 β + Ξ΅ β 0 + 0 β + Ξ΅ + β + l p i l p i ( ) p l p l 2 2 M M οΏ½ ( ) 3 4 1 1 0 , l l οΏ½ οΏ½ ( ) οΏ½ οΏ½ ( ) 2 β + Ξ΅ 2 02 2 β + β β + + Ξ΅ 0 0 0 l l i ' ' p p l p p l i 0 l 3 1 1 d l β« = 4 οΏ½ ie οΏ½ οΏ½ οΏ½ ( ) 3 + 2 2 Ο 2 ( ) οΏ½ β β 2 + l p 2 ( ) β + β Ξ΅ l p 0 2 0 β β 2 + Ξ΅ p i β β p l i M 2 β M β 3 4 1 4 3 1 οΏ½ 2 οΏ½ 2 οΏ½ β β + 2 ( ) ( ) οΏ½ οΏ½ 2 l p 0 β 0 β β β + + Ξ΅ 2 2 ' ' β β p p p p l i Q M 2 β M β + 3 4 β¦ Q Q οΏ½ 1 β β 3 Ξ± 2 2 1 1 Q M e e M 4 + Ξ± + βΌ βΌ β¦ β β e Ο 2 2 2 Ο 2 2 4 4 β β Q Q Q Q Q Q infrared enhancement! 6/2/2009 v. Kolck, Intro to EFTs 40
β« 0 dl β + + β¦ + + 1 1 β β 2 Q M Q β« 0 dl βtime-ordered + β + β¦ perturbation theoryβ 1 β Q 6/2/2009 v. Kolck, Intro to EFTs 41
(0) = + + β¦ T ΟΟ bound state at Ξ± βΌ β§ β« Q M β β 2 2 1 e M e + Ξ± + βΌ β¦ βΌ 1 O β¨ β¬ β β 2 β β 2 2 Q β β Q β© Q β Q M β Ξ± 2 M βΌ βΌ β Ξ± E 1 O β β M β β Q (0) (0) V T ΟΟ ΟΟ (0) = + + β¦ = (0) + V V ΟΟ ΟΟ (0) (0) V V ΟΟ ΟΟ Lippmann-Schwinger eq. β β = Schroedinger eq. 2 Coulomb e = (0) = ΰΈ O β β V β β 2 ΟΟ Λ potential 2 p β β Q + (0) Ο (0) = ( 0 ) Ο (0 ) β β V E ΟΟ 2 M β β known resultsβ¦ 6/2/2009 v. Kolck, Intro to EFTs 42
But more : β β Ξ± 2 e = + + β¦ + β¦ + = (1) ΰΈ O β β V ΟΟ Ο 2 4 β β Q (0) T ΟΟ (1) (0) V T ΟΟ ΟΟ (1) (1) = + + + T (1) V V ΟΟ ΟΟ ΟΟ (0) (1) T V ΟΟ ΟΟ (0) T ΟΟ = + Ο Ο (1 ) (0) (0) (1) (0) E E V ΟΟ Ξ± β β = (0) ΰΈ O β β E Ο β 4 β 6/2/2009 v. Kolck, Intro to EFTs 43
β β 2 2 Q e = + β¦ (2) = + ΰΈ O β β V ΟΟ 2 2 β β M Q (2) = β¦ T ΟΟ = + Ο Ο + β¦ (2 ) (1) (0) (2) ( 0 ) E E V β β 2 ΟΟ Q = (0) ΰΈ O β β E 2 β β M οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ ( ) ( ) ( ) ( ) 2 β« β ΞΌ β ΞΌ 3 Ο (0)* Ξ΄ (3) Ο (0) = ΞΌ β ΞΌ Ο (0) piece 0 d r r r r 1 2 1 2 magnetic interaction 6/2/2009 v. Kolck, Intro to EFTs 44
N (3) starting at , sufficiently many derivatives appear at vertices that T ΟΟ O Ξ loops bring positive powers of , which need to be compensated by T ( ) Ξ³ Ξ ( ) and higher-order βcountertermsβ i E 0 β β Ξ± 2 2 = Q e (3) + = + β¦ + V ΰΈ O β β ΟΟ Ο 2 2 4 β β M Q Ξ± 2 ( ) Ξ³ ( ) = O Ξ± 2 β Ξ β ln i ΰΈ 0 2 M Etc. 6/2/2009 v. Kolck, Intro to EFTs 45
Example: g factor for electron bound in H-like atoms ( ) = + ΞΊ 2 1 g electron known Larmor frequency ion mass Ο Ο (0) measured + = + β¦ measured Ο Ο (0) electron trapped-ion ion charge mass cyclotron frequency Pachucki, Jentschura + Yerokhin β04 β β m = 12 ( ) C gs β β u 12 β β 6/2/2009 v. Kolck, Intro to EFTs 46 Most precise determination of electron mass (expt)(th)
Summary Nuclear systems involve multiple scales but no obvious small coupling constant EFT is a general framework to deal with a multi-scale problem using the small ratio of scales as an expansion parameter Applied to low-energy QED, EFT reproduces well-known facts and also provides a systematic expansion for the potential -- NRQED is in fact the framework used in state-of-the-art QED bound-state calculations Stay tuned: next, how we can make nuclear physics as systematic as QED 6/2/2009 v. Kolck, Intro to EFTs 47
Introduction to Effective Field Theories in QCD U. van Kolck University of Arizona Supported in part by US DOE 6/2/2009 v. Kolck, Intro to EFTs 48
Outline οΏ½ Effective Field Theories οΏ½ QCD at Low Energies QCD and Chiral Symmetry Chiral Nuclear EFT Renormalization of Pion Exchange Summary οΏ½ Towards Nuclear Structure 6/2/2009 v. Kolck, Intro to EFTs 49
References: S. Weinberg, Phenomenological Lagrangians, Physica A96:327,1979 S. Weinberg, Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces, Nucl.Phys.B363:3-18,1991 S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, and U. van Kolck, Singular potentials and limit cycles, Phys.Rev.A64:042103,2001, quant-ph/0010073 A. Nogga, R.G.E. Timmermans, and U. van Kolck, Renormalization of one-pion exchange and power counting, Phys.Rev.C72:054006,2005, nucl-th/0506005 6/2/2009 v. Kolck, Intro to EFTs 50
condensed-matter physics and beyond molecular atomic physics nuclear physics Chiral EFT 0.1 physics NRQED ? 1 The world QCD (2 or 3 flavors) as an onion 2 10 QED QCD (6 flavors) Fermi Th Electroweak Th 15 10 + higher-dim ops (SUSY) 19 GUT? 10 General Relativity + higher-curvature terms ? 10 β 10 β 10 β 10 β 20 16 (fm) 3 1 1 r (GeV) E 6/2/2009 v. Kolck, Intro to EFTs 51
Game Plan QCD lattice large r necessary to extrapolate to EFT small m Ο NCSM,β¦ ? want model independence Few-nucleon lattice,β¦ systems Many-nucleon systems Infinite-nucleon system 6/2/2009 v. Kolck, Intro to EFTs 52
EFT at a few GeV= underlying theory for nuclear physics β β β + β u l =β β =β d.o.f.s leptons: quarks: β photon: A ΞΌ gluons: q l a G ΞΌ f Ξ½ β β d β β f symmetries: (3,1) global, (1) gauge, (3) gauge SO U SU em c β β 1 0 3 1 ( ) β =β ΞΌΞ½ β = β + β β C L l i e CA m l F F 0 0 β β ΞΌΞ½ und f f f 4 = 1 f β β + Ο 0 1 3 23 QED = = 3 1 Tr β β Q ( ) β‘ β€ + β + + β ΞΌΞ½ 0 6 β β 13 β q i e QA g G q G G + β£ β¦ ΞΌΞ½ s 2 QCD 1 1 ( ) ( ) Ο β + β β m m qq m m q q 3 u d u d 2 2 e.g. higher-dimension interactions: m m + ΞΈ Ξ³ + β¦ G β suppressed by larger masses 2 u d 1 qi q M + 5 , F W Z m m u d unnaturally small T violation ΞΈ < β 9 10 (strong CP problem) οΏ½ 6/2/2009 v. Kolck, Intro to EFTs 53
Focus on strong-interacting sector: four parameters = = = ΞΈ = 1) 0, 0, 0 βchiral limitβ m m e u d single, dimensionless parameter β§ β« 1 Tr ( ) β« β« = β / + / β ΞΌΞ½ 4 4 L β¨ β¬ d x d x q i g G q G G Ξ» β β 1 ΞΌΞ½ x x QCD s β© 2 β β Ξ» 32 q q invariant under scale transformations but in β Ξ» G G ( ) = β« β« β« β« 4 exp L Z DG Dq Dq i d x QCD Ξ scale invariance 0.3 βanomalously brokenβ by dimensionful regulator Ξ± s ( Β΅ ) coupling runs 0.2 ( ) Ξ± βΌ 1GeV βΌ 1 s Q 0.1 (βdimensional transmutationβ) 6/2/2009 v. Kolck, Intro to EFTs 54 0 2 1 10 10 Β΅ GeV
Non-perturbative physics at Q βΌ 1 GeV Assumption 1: confinement only colorless states (βhadronsβ) are asymptotic Observation: (almost) all hadron masses > 1 GeV οΏ½ Assumption 2: naturalness masses are determined by characteristic scale βΌ 1 GeV M QCD Observation: pion mass Ο οΏ½ 140 MeV οΏ½ m M QCD breakdown of naturalness? NO! βspontaneous breakingβ of chiral symmetry 6/2/2009 v. Kolck, Intro to EFTs 55
Why is the pion special? 1 Tr ( ) ( ) ΞΌΞ½ = β / + / + β / + / β L q i g G q q i g G q G G ΞΌΞ½ QCD L s L R s R 2 + Ξ³ 1 β β β Ξ³ 1 u 5 = d β β 5 q q q β β 2 2 β β chiral symmetry invariant under οΏ½ οΏ½ ( ) β Ξ± β Ο Γ exp (2) (2) βΌ (4) q i q SU SU SO ( ) ( ) ( ) L R L R L R L R broken by vacuum down to isospin οΏ½ m m Ο Ο οΏ½ οΏ½ ( ) β Ξ± Ο β οΏ½ (2) + βΌ (3) exp m m SU SO q i q L R N N β + 6/2/2009 v. Kolck, Intro to EFTs 56
Chiral V QCD Limit chiral circle Ο two isospin axis qq not shown Ο Ξ³ Ο f Ο qi q 5 1 pion decay constant (in chiral limit) β Ο on chiral circle] EFT = β + piece invariant under [function of L Ο Ο Ξ΅ ΞΌ β β 2 Ο β + β 1 β¦ Ο β β ΞΌ 2 4 f β β Ο 6/2/2009 v. Kolck, Intro to EFTs 57
β β = ΞΈ = 2) 0 , 0, 0 m m e u d 1 Tr ( ) ΞΌΞ½ = β / + / β L q i g G q G G ΞΌΞ½ QCD s 2 v.K. β93 1 1 + + + β Ο + β¦ ( ) ( ) m m q q m m q q 3 u d u d 2 2 4 th component of 3 rd component of (4) vector (4) vector SO SO οΏ½ οΏ½ ( ) ( ) = Ξ³ Ο = Ο Ξ³ , , S qi q qq P q q qi q 5 5 break β β (4) (3) (1) SO SO U (explicit chiral-symmetry breaking) (isospin violation) 6/2/2009 v. Kolck, Intro to EFTs 58
Chiral V QCD Limit slightly-tilted chiral circle Ο two isospin axis qq not shown Ο f Ο β 92 MeV Ξ³ Ο qi q pion decay constant 5 1 β EFT = β Ο β + ] piece invariant under L Ο Ο Ξ΅ [function of Q ΞΌ β + Ο ( ) explicitly] + piece in direction [function of m m qq u d β β + isospin breaking ( ) m m u d CHIRAL SYMMETRY WEAK PION INTERACTIONS 6/2/2009 v. Kolck, Intro to EFTs 59
3) β ΞΈ = 0, 0 e Two types of interactions: = β β D i QA e ΞΌ ΞΌ ΞΌ οΏ½ βsoftβ photons β explicit d.o.f. in the EFT = β β β F A A ΞΌΞ½ ΞΌ Ξ½ Ξ½ ΞΌ οΏ½ βhardβ photons β βintegrated outβ of EFT v.K. β93 ( ) ΞΌΞ½ = β Ξ³ β Ξ³ + 2 2 L β¦ β¦ e qQ q D qQ q ΞΌ Ξ½ und Ξ΅ Ξ³ Ξ³ Ο Ξ³ Ο β β qi q qi q 34 comp of ΞΌ ΞΌ 5 = β ijk k j β F ΞΌ β Ξ³ Ο antisymmetric tensor 0 qi q β β ΞΌ i breaks β (4) (3) (1) (and in particular) SO SO U EFT = L β soft photons e Ξ± β + further isospin breaking 4 Ο 6/2/2009 v. Kolck, Intro to EFTs 60
4) ΞΈ β 0 m m = + ΞΈ Ξ³ + β¦ β¦ L u d qi q 5 + un d m m u d οΏ½ ( ) 4 th component of = Ο Ξ³ (4) vector , SO P q q qi q 5 T violation linked to isospin violation: in EFT, combination is 1 m m ( ) β β + ΞΈ u d m m P P 3 4 + 2 u d m m u d Hockings, Mereghetti + v.K., in preparation 5) continue with higher-order operators, De Vries, Mereghetti, e.g. T-violating quark EDM and color-EDM Timmermans + v.K., in progress β¦ P-violating four-quark operators Kaplan + Savage β96 Zhu, Maekawa, Holstein, Musolf + v.K. β02 6/2/2009 v. Kolck, Intro to EFTs 61
Nuclear physics scales βHis scales are His prideβ, Book of Job ln Q perturbative QCD brute force Ο ~ , , 4 , β¦ ~1 GeV M m m f (lattice), β¦? Ο Ο QCD N hadronic th this talk with chiral symm Q M ~100 MeV Ο β¦ ~ , 1/ , , M f r m QCD Ο nuc NN β΅ ~30 MeV ~ 1 a Q M NN nuc halo nuclei no small coupling expansion in 6/2/2009 v. Kolck, Intro to EFTs 62
Nuclear EFT pionful EFT βΌ οΏ½ Q m M Ο QCD Ξ β β’ d.o.f.s: nucleons, pions, deltas ( ~ 2 ) m m m Ο N β ++ β ( ) Ξ β β + β Ο + Ο 2 β β Ο β β β β + β β Ξ 1 p β β β β ( ) β β Ξ = β = β + β = Ο = β Ο β Ο β Ο 2 N i β β β Ξ 0 2 β β β β n β β β β Ο β β Ο β β β β 0 β Ξ 3 β β β β β’ symmetries: Lorentz, P, T, chiral Weinberg β68 Non-linear realization of chiral symmetry Callan, Coleman, Wess + Zumino β69 chiral invariants + 's, 's, 's S P F 4 3 34 β Ο β β β β 2 Ο ( ) ΞΌ ( ) (chiral) β‘ β + pion 1 β¦ = O + β β β β 2 D m m m M ΞΌ 2 Ο 4 u d QCD β β β β f f covariant Ο Ο β β ( ) 2 m β‘ β β β fermions derivatives D + = Ο β β O i t E m m β β ΞΌ ΞΌ ΞΌ u d M β β QC D Ο β‘ Γ E D ΞΌ ΞΌ 6/2/2009 v. Kolck, Intro to EFTs 63 f Ο
Schematically, p f n β β β β β β 2 2 β Ο Ο + 2 2 , D , Ο m m m β D = Ξ Ο 2 2 β β β β β β L N c f M β β β β β β Ο { , , } 2 2 2 EFT n p f QCD M M f f M β β β β β β { , , } Ο Ο n p f QCD Q C D QCD = O (1) isospin conserving (NDA: naΓ―ve Ξ± β β calculated from QCD: lattice, β¦ dimensional = Ξ΅ isospin breaking , 4 O β β analysis) fitted to data Ο β β β = β L f f Ξ ( ) Ξ β‘ + + β β‘ + β β₯ 2 2 0 n p d 2 2 Ξ= 0 chiral symmetry βchiral indexβ 6/2/2009 v. Kolck, Intro to EFTs 64
β β β β 2 2 1 Ο 1 Ο β¦ = β β + β β + (0) 2 2 2 L ( Ο ) 1 β¦ Ο 1 β¦ β β β β m ΞΌ Ο 2 2 2 2 2 4 β β β β f f Ο Ο β¦ οΏ½ β‘ β€ β β 2 1 οΏ½ Ο g + + β β β Γ β + + + Ο β β β β + Ο Ο Ο β¦ Ο Ο β¦ ( ) ( ) 1 β β β’ β₯ A N i N N N 0 0 2 2 4 2 4 β£ β¦ β β f f f Ο Ο Ο οΏ½ οΏ½ β¦ ( ) h [ ] ( ) + Ξ + β β β + Ξ + + + Ξ + β β β + β¦ β¦ T Ο β¦ ( ) Ξ .c. ( ) 1 A i m m N S Ξ 0 N 2 f Ο οΏ½ ( ) ( ) 2 2 β + β + Ο C N N C N N S T β‘ β€ 2 οΏ½ οΏ½ β β β β 1 1 1 1 + β’ β₯ (1) = β + β Γ β + + β Ο β Ο β + L Ο ( Ο Ο ) β¦ ( ) Ο Ο β¦ β β β β N m m N 3 3 2 2 2 4 2 p n 2 β’ β₯ β β β β m f f β£ β¦ Ο Ο β¦ N οΏ½ 1 β‘ β€ + + β 2 β β 2 β 2 2 + Ξ΅ Ξ΅ Ο Ο β Ο β Ο + ( Ο ) ( Ο ) 2 Ο ( )( ) β¦ N b b b m ib N β£ β¦ Ο 2 0 3 1 4 2 ijk ab c k c i b j c f Ο β¦ οΏ½ οΏ½ g ( ) β‘ β€ β + Ο β β + β β + Ξ .c ( ) 1 β¦ Ο Ο A iN N β£ β¦ 0 4 m f Ο N οΏ½ β¦ οΏ½ d N ( ) + + + Ο β β β + Ο ( Ο ) 1 β¦ N N N f Ο ( ) 3 + β E N N (2) = β¦ Form of pion interactions L determined by 6/2/2009 v. Kolck, Intro to EFTs 65 chiral symmetry
Weinberg β79 A= 0, 1: chiral perturbation theory Gasser + Leutwyler β84 β¦ Gasser, Sainio + Svarc β87 Jenkins + Manohar β91 β¦ 1 1 T βΌ Ξ E Q nucleon nucleon Ξ½ β β β β dense but Q Q β β β βΌ β β c F β β short-ranged Ξ½ Ξ½ β β M m β β Ξ½ Ο QCD β Ξ½ = β + + Ξ β₯ Ξ½ = β 2 2 2 A L V A min i i i # loops # vertices of type i β 1 0.3 fm M QCD long-ranged expansion in but sparse β§ non-relativistic Q m N βͺ Q m Ο β 1 1.4 fm βΌ β¦ multipole , β¨ Q m Ο M βͺ 6/2/2009 v. Kolck, Intro to EFTs 66 Ο 4 QCD pion loop β© Q f Ο
Analogous to NRQEDβ¦ Weinberg β79 Gasser + Leutwyler β84 β¦ = + + + T + + β¦ ΟΟ current Weinberg β66 β¦ Gasser, Sainio + Svarc β87 algebra Jenkins + Manohar β91 β¦ = + + + + + β¦ T Ο N β β 3 Q ( ) β β < N.B. For β β a resummation is necessary οΏ½ O E m m β β Ξ 2 N M β β Phillips + Pascalutsa β02 Etc. QCD Long + v.K. , in preparation 6/2/2009 v. Kolck, Intro to EFTs 67
A > 2: resummed chiral perturbation theory Weinberg β90, β91 A-nucleon irreducible V infrared infrared 1 m 0 βΌ N l V enhancement! enhancement! Ξ 2 E Q 1 A-nucleon reducible 2 e.g. V 2 1 4 1 1 d l β« οΏ½ i V V Ο + β β Ξ΅ β + β β Ξ΅ 4 0 2 2 0 2 2 (2 ) l k m l m i l k m l m i N N N N V 3 β β m d l m Q β« = + 2 β¦ βΌ O N N β β V V V Ο β Ο 3 2 2 2 (2 ) β 4 β l k k = E 2 m Q instead of N Ο 2 (4 ) 6/2/2009 v. Kolck, Intro to EFTs 68
οΏ½ οΏ½ οΏ½ ( ) 2 β β β β + Ο β Ο Λ ( ) 2 1 S q g q β 12 1 2 βΌ Ο Ο βΌ β A β β β οΏ½ i 1 2 + 2 2 2 2 3 β β β β tensor force f q m f Ο Ο Ο οΏ½ οΏ½ οΏ½ οΏ½ = Ο β Ο β β Ο β Ο Λ Λ Λ ( ) 3 S q q q 12 1 2 1 2 3 2 2 2 1 1 1 1 Q Q Q Q βΌ βΌ ( ) ( ) 4 2 2 2 2 Ο 4 Ο f Q Q Q Q f Ο 4 f Ο Ο β β 2 Q = β β O β β 2 M β β QCD 3 2 2 2 1 1 1 1 Q Q Q Q Q βΌ βΌ ( ) ( ) β β 4 2 2 2 2 Ο 4 Ο f m m Q Q Q m m f 4 f Ο Ξ Ξ Ο N N Ο ( ) = O 1 3 2 2 1 1 1 Q m Q Q m Q Q βΌ βΌ βΌ N N Ο Ο ΞΌ 4 2 2 2 2 2 4 4 f Q Q Q f f f f Ο Ο Ο Ο Ο Ο ( ) ΞΌ for Q = O 1 βΌ 1 β‘ Ο ΞΌ 6/2/2009 v. Kolck, Intro to EFTs 69 Ο
bound state at ΞΌ 2 2 Q ΞΌ β Ο βΌ βΌ βΌ = + + β¦ Q E (0) Ο T m M N QCD β§ β« Ο β β 4 βͺ βͺ 1 1 1 f Q = ΞΌ β Ο + + βΌ βΌ 1 O β¦ βΌ β¨ β¬ β β M f f Ο Ο Ο nuc ΞΌ 2 2 β β βͺ βͺ m β β f f β© β Q Ο Ο Ο β N 1 O β β Nuclear scale ΞΌ β β Ο arises naturally from (0) V (0) T chiral symmetry = + + β¦ = (0) + (0) V V (0) (0) V V Is 1PE all there is in leading order? ? = (0) + V That is, are observables cutoff independent with 1PE alone? 6/2/2009 v. Kolck, Intro to EFTs 70
Issue: relative importance of pion exchange and short-range interactions οΏ½ οΏ½ οΏ½ ( ) 2 β β β β + Ο β Ο Λ 2 ( ) Ο 4 S q g q 12 1 2 β βΌ Ο Ο βΌ β A β β β οΏ½ i 1 2 + ΞΌ 2 2 2 3 β β β β f q m m Ο Ο Ο N 2 β β β β 2 οΏ½ S = m g 0 β = β β Ξ΄ (3) + Ο ( ) Ο Ο ( ) m r β A β β β Ο V r r e S = 1 1 2 Ο 2 4 β β β β f r Ο 2 β« β§ β β β β β β 2 2 βͺ βͺ 1 1 1 1 g m m β β = β Ξ΄ β + + + (3) Ο Ο Λ ( ) Ο Ο ( ) ( ) β¨ m r m r β¬ β β β β β β A V r r e Ο e Ο S r 1 2 1 2 Ο Ο 2 2 3 4 4 ( ) 3 βͺ βͺ β β β β β β f β© r r m r m r β Ο Ο Ο β + 1 1 S j j j much more singular --and complicated!-- than 12 + β ( 1) 1 j j j β β 1 2 0 6 j 2 2 + + 2 1 2 1 2 ie e j j e ( ) βΌ βΌ β = οΏ½ οΏ½ V r ( ) 2 2 0 2 0 Ο β β Ξ΅ 4 ' j Q r p p i + + ( 1) 2 j j j + β 1 6 0 2 j + + 2 1 2 1 j j 6/2/2009 v. Kolck, Intro to EFTs 71
Weinberg β90, β91 Ordonez + v.K. β92 Assume contact interactions are driven by Ordonez, Ray + v.K. β96 short-range physics, and scale with M β¦ QCD according to naΓ―ve dimensional analysis Entem + Machleidt β03β¦ Epelbaum, Gloeckle + Meissner β04 (W power counting) ... Ο 4 οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ S = 0 = Ξ΄ (3) ( ) ( ) Ο β Ο + Ο β Ο β ( 1) ( 3) V r r ΞΌ β (0) (1) βΌ 1 2 1 2 C C m 0 0 0 N 4 4 Ο 4 οΏ½ S = 1 = Ξ΄ Ο Ο (3) ( ) ( ) 4 4 V r r β‘ β‘ ΞΌ m ΞΌ ΞΌ 1 N m m 0 1 N N ΞΌ ΞΌ βΌ ( ) in LO i C Ο 0 i Ο (terms linear in 2 4 Q in NLO βΌ ΞΌ 2 break P, T ) m M Q M Ο N QCD QCD etc. 6/2/2009 v. Kolck, Intro to EFTs 72
Ordonez + v.K. β92 v.K. β94 β¦ = + + + + + β¦ + β¦ V 2 N + + + β¦ + = + + β¦ + β¦ V 3 N + + β¦ higher powers of Q Etc. more nucleons 6/2/2009 v. Kolck, Intro to EFTs 73
β¦ 3-body 2-body 4-body β β 1 LO O β β 2 β β f Ο β β 1 Q β β O (parity violating) β β 2 f Ο M β β QCD β β 2 1 Q NLO β β O β β 2 2 f M β β Ο QCD β β 3 1 Q NNLO β β O β β 2 3 f M β β Ο QCD β β 4 1 Q NNNLO β β O β β 2 4 f M β β Ο QCD ETC. 6/2/2009 v. Kolck, Intro to EFTs 74
Hierarchies many-body forces A canon emerges! οΏ½ οΏ½ οΏ½β¦ Weinberg β90, β91 V V V 2 3 4 N N N isospin-breaking forces οΏ½ οΏ½ v.K. β93 V V V Similar explanation for IS IV CSB οΏ½ οΏ½ οΏ½β¦ Rho β92 J J J 1 2 3 N N N external currents 6/2/2009 v. Kolck, Intro to EFTs 75
Ordonez + v.K. β92 v.K. β94 β¦ = + + + + + β¦ + β¦ V 2 N + + + β¦ similar to phenomenological potential models, e.g. AV18 β (OPE)^2 + non-local terms Stoks, Wiringa + Pieper β94 6/2/2009 v. Kolck, Intro to EFTs 76
6/2/2009 v. Kolck, Intro to EFTs 77
But: NOT your usual potential! Ordonez + v.K. β92 (cf. Stony Brook TPE) Ο + Ο e.g. , + + β¦ + 1 for chiral v.d. Waals force Ο β 2 βΌ 0 Rentmeester et al. β01, β03 m 6 r Nijmegen PSA of 1951 pp data Kaiser, Brockmann + Weise β97 0 Ο 2 long-range pot #bc min OPE 31 2026.2 -1 2 Ο Ο + Ο + OPE TPE ( ) 28 1984.7 lo V C (r) [MeV] + -2 OPE TPE ( ) 23 1934.5 nlo Nijm78 19 1968.7 -3 at least Isoscalar Central Potential parameters found as good! consistent with Ο N data! -4 2.0 2.5 3.0 3.5 4.0 r [fm] models with Ο , Ο , β¦ Similar results in other channels, 6/2/2009 v. Kolck, Intro to EFTs 78 might be misleadingβ¦ e.g. spin-orbit force!
v.K. β94 Friar, Hueber + v.K. β99 Coon + Han β99 Fujita + Miyazawa β58 ... = V 3 N two unknown + + + parameters + β¦ Tucson-Melbourne pot with TMβ β β 2 2 Coon et al. β78 a a m c Ο potential β 0 c οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ οΏ½ ( ) ( ) ( ) β‘ β€ = Ξ΄ + β + 2 + 2 β Ξ΅ Ο Ο β Γ + , ' ' ' ' β¦ t N q q a b q q c q q d q q β£ β¦ Ο Ξ±Ξ² Ξ±Ξ²Ξ³ Ξ³ 3 Ξ±Ξ² 6/2/2009 v. Kolck, Intro to EFTs 79
Ordonez, Ray + v.K. β96 Many successes of Weinbergβs counting, e.g. , β¦ Epelbaum, Gloeckle + Meissner β02 οΏ½ To N3LO (w/o deltas), fit to NN Entem + Machleidt β03 phase shifts comparable to those of β¦ βrealisticβ phenomenological potentials Entem + Machleidt β03 VPI PSA Nijmegen NNNLO PSA NNLO NLO 6/2/2009 v. Kolck, Intro to EFTs 80
οΏ½ With N3LO 2N and N2LO 3N potentials (w/o deltas), good description of β’ 3N observables and 4N binding energy β’ levels of p-shell nuclei Epelbaum et al. β02 Gueorguiev, Navratil, Nogga, Ormand + Vary β07 6/2/2009 v. Kolck, Intro to EFTs 81
measured: Illinois β94, SAL β00, Lund β03 Ξ³ β Ξ³ d d extracted nucleon polarizabilities: Beane, Malheiro, McGovern, Phillips + v.K. β04 threshold amplitude predicted: Beane, Bernard, Lee, Meissner Ξ³ β Ο 0 d d + v.K. β97 confirmed: SAL β98, Mainz β01 Many reactions: measured: IUCF β90-β¦, TRIUMF β91-β¦, Uppsala β95-β¦ β pp Ο 0 pp S waves sensitive to high orders: Miller, Riska + v.K. β96 pn Ο + β pp P waves converge, fix 3BF LEC: Hanhart, Miller + v.K. β00 d Ο + β pp CSB asymmetry sign predicted: Miller, Niskanen + v.K. β00 β d Ο 0 pn confirmed: TRIUMF β03 measured: IUCF β03 β Ξ±Ο 0 dd mechanisms surveyed: Fonseca, Gardestig, Hanhart, Horowitz, Miller, Niskanen, Nogga +v.K. β04 β06 + PARITY, TIME-REVERSAL VIOLATION , etc. 6/2/2009 v. Kolck, Intro to EFTs 82
BUT Is Weinbergβs power counting consistent? No! attractive in some channels 2 β β β§ β« 3 Λ ( ) m g S r β β + Ο βΌ Ο Ο 12 β¦ β¨ β¬ m r β β A Ο e 1 2 Ο 3 2 4 ( ) β β β© β f m r Ο Ο singular potential not enough contact interactions for renormalization-group invariance even at LO 6/2/2009 v. Kolck, Intro to EFTs 83
6/2/2009 v. Kolck, Intro to EFTs 84
Renormalization of the potential 1 n r 1 Ξ β‘ ( ) R V r OPE: r = β§ 2 m m οΏ½ N βͺ Ξ Ξ΄ (3) Ξ» ( ) ( ) ( ) = C r f r r 1 βͺ r m Ξ 0 0 Ο 0 β¨ 2 β β 2 n Ξ» = ΞΌ ( ) r m r r r m βͺ β ΞΈ β ( ) 1 0 Ο Ο β β 0 V R 0 βͺ β β = β R ( ) exp( ) β© f r r r r 0 0 ( ) u r ( ) s wave Ο β‘ βΌ οΏ½ n r R r 0 n r matching so that β β β T R ( ) ( ) β β = Ξ» = 2 2 2 cot 2 , , βΌ 1 O β β s m R V m R V F r R k r T 0 0 0 0 n β ln s β β R r 0 6/2/2009 v. Kolck, Intro to EFTs 85
n β₯ 2 Beane, Bedaque, Childress, Kryjevski, McGuire + v.K. β02 Two regular solutions that oscillate! if no counterterm, will depend on cutoff R model dependence 1 β β β β β Ξ» Ξ» 4 = β + Ξ΄ β ( οΏ½ ) cos + β¦ β β u r r determined by β β ( )( ) 0 β 2 1 n n ( ) n β n β β 2 1 r r n r r β β 0 low-energy data 0 β β β 1 2 n β β Ξ» n R ( ) β β Ξ» = β Ξ» + Ξ΄ + , , tan β¦ β β F r R β ( )( ) β β 0 2 1 n 4 n β n β β 2 1 r n R r β β 0 0 3rd u οΏ½ r οΏ½ 6 οΏ½ R οΏ½ H 4 οΏ½ = β 2 2 5 exact m R V 0 4 r 3 1st 2 2nd 1 exact vs perturbation th 0.03 0.04 0.05 0.06 0.07 0.08 0.09 R 6/2/2009 v. Kolck, Intro to EFTs 86 limit-cycle-like behavior
Same is true in all channels were Beane, Bedaque, Savage + v.K. β02 Nogga, Timmermans + v.K. β05 attractive singular potential is iterated Pavon Valderrama + Ruiz-Arriola, β06 Birse, β06, β07 Ξ» + ( 1) r l l β + 0 Long + v.K., β07 3 2 r r [ ] 3 + ( 1) 4 l l + ( 1) l l ( ) 2 27 Ξ» r 0 2 r r Ξ» Ξ» 3 r = β 0 r r 1 0 + l 3 2 ( 1) l l but βΌ οΏ½ for + Ξ» r ( 1) οΏ½ r r l l 0 l M singular potential only needs to be iterated in a few waves, where counterterms are needed 3 M + < QCD ( 1) βΌ 5 l l OPE: ΞΌ οΏ½ 2 Ο l < 2 οΏ½ 6/2/2009 v. Kolck, Intro to EFTs 87
certain counterterms that in Weinbergβs counting Q were assumed suppressed by powers of M QCD Q are in fact suppressed by powers of lf Ο short-range physics more important than assumed by Weinbergβs; most qualitative conclusions unchanged, but quantitative results need improvement ACTIVE RESEARCH AREA 6/2/2009 v. Kolck, Intro to EFTs 88
Examples 1 S Other singlet channels 0 Nogga, Timmermans + v.K. β05 Beane, Bedaque, Savage + v.K. β02 (cf. Birse + McGovern β04) Ξ = 985 MeV Ξ΄ LO EFT 0 8 60 Ξ = 492 MeV 1 P 1 -5 6 Ξ = 140 MeV Ξ΄ [deg] 1 D 2 -10 40 4 -15 Nijmegen 2 -20 20 PSA -25 0 0 1 100 200 300 1 F 3 0.8 -1 | P | (MeV) Ξ΄ [deg] 0.6 Ξ΄ -2 0.4 60 NLO EFT -3 1 G 4 0.2 -4 0 40 0 50 100 150 200 0 50 100 150 200 T L [MeV] T L [MeV] 20 LO EFT β Ξ = 1 ( 20fm ) Nijmegen PSA 100 200 300 6/2/2009 v. Kolck, Intro to EFTs 89 | P | (MeV)
Attractive triplet channels 12 30 10 3 P 0 25 8 20 Ξ΄ [deg] 6 15 LO EFT 3 4 S Ο -limit 1 150 10 3 P 2 2 Ξ΄ 5 0 100 -2 0 0 m 1.4 Ο Ξ΅ 2 50 Nijmegen -1 1.2 PSA 1.0 -2 Ξ΄ [deg] 0.8 -3 100 200 0.6 -4 3 F 2 | P | (MeV) 0.4 -5 0.2 Beane, Bedaque, Savage + v.K. β02 0.0 -6 0 50 100 150 200 0 50 100 150 200 T L [MeV] T L [MeV] Repulsive triplet channels LO EFT 0 0 β Ξ = 1 ( 20fm ) 3 P 1 -5 3 F 3 -1 Nijmegen PSA Ξ΄ [deg] -10 -2 -15 Nogga, Timmermans + v.K. β05 -3 (cf. Pavon Valderrama + Ruiz-Arriola, β06) -20 -25 -4 6/2/2009 v. Kolck, Intro to EFTs 90 0 50 100 150 200 0 50 100 150 200 T L [MeV] T L [MeV]
Summary A low-energy EFT of QCD has been constructed and used to describe nuclear systems Chiral symmetry plays an important role, in particular setting the scale for nuclear bound states Nuclear physics canons emerge from chiral potential A new power counting has been formulated: more counterterms at each order relative to Weinbergβs; expect even better description of observables Stay tuned: next, how to extend EFT to larger systems 6/2/2009 v. Kolck, Intro to EFTs 91
Introduction to Effective Field Theories in QCD U. van Kolck University of Arizona Supported in part by US DOE 6/2/2009 v. Kolck, Intro to EFTs 92
Outline Effective Field Theories οΏ½ QCD at Low Energies οΏ½ οΏ½ Towards Nuclear Structure Contact Nuclear EFT Few-Body Systems No-Core Shell Model Halo/Cluster EFT Conclusions and Outlook 6/2/2009 v. Kolck, Intro to EFTs 93
References: U. van Kolck, Effective field theory of short-range forces, Nucl.Phys.A645:273-302,1999, nucl-th/9808007 P.F. Bedaque, H.-W. Hammer, and U. van Kolck, The three-boson system with short-range interactions, Nucl.Phys.A646:444-466,1999, nucl-th/9811046 I. Stetcu, B.R. Barrett, and U. van Kolck, No-core shell model in an effective-field-theory framework, Phys.Lett.B(to appear),2007, nucl-th/0609023 P.F. Bedaque, H.-W. Hammer, and U. van Kolck, Narrow resonances in effective field theory, Phys.Lett.B569:159-167,2003, nucl-th/0304007 6/2/2009 v. Kolck, Intro to EFTs 94
Nuclear physics scales βHis scales are His prideβ, Book of Job ln Q perturbative QCD brute force Ο f ~ , , 4 , β¦ ~1 GeV M m m (lattice), β¦? Ο Ο QCD N hadronic th Chiral EFT with chiral symm Q M ~ , 1 / , , β¦ ~100 MeV M f r m Ο Ο QCD nuc NN β΅ ~30 MeV ~ 1 a Q M NN nuc this talk no small coupling expansion in 6/2/2009 v. Kolck, Intro to EFTs 95
Lots of interesting nuclear physics at E βΌ 1 MeV instead of E βΌ 10 MeV within a few MeV of thresholds: οΏ½ many energy levels and resonances (cluster structures) οΏ½ most reactions of astrophysical interest show universal features, i.e. to a very good approximation are independent of details of the short-range dynamics bonus: same techniques can be used for dilute atomic/molecular systems 6/2/2009 v. Kolck, Intro to EFTs 96
cf. Bethe + Peierls β35 - pionful EFT an overkill at lower energies! channel : channel : e.g. NN s s 0 1 (real) bound state = deuteron (virtual) bound state β΅ β β΅ β < 0 ~ 8 MeV οΏ½ 1 ~ 45 MeV m B m m N B m Ο Ο * N d d β΅ β 1 4.5 fm 1 multipole expansion of meson cloud: contact interactions among local nucleon fields 6/2/2009 v. Kolck, Intro to EFTs 97
β΅ pionless EFT βΌ οΏ½ Q M nuc β’ d.o.f.: nucleons β’ symmetries: Lorentz, P, T β β β 2 + + + = β + + L β β N i N C N N N N 0 0 EFT 2 β β m omitting N spin, isospin β 4 + + + + + β 2 N N C N N N N 2 3 8 m N οΏ½ οΏ½ β² + + + β β β + β¦ C N N N N 2 6/2/2009 v. Kolck, Intro to EFTs 98
0 l iC Ξ ~ ( ) 0 2 1 2 4 1 1 d l β« Ξ 2 οΏ½ οΏ½ βΌ ( ) 1 C οΏ½ οΏ½ ( ) 0 4 + + 2 2 Ο ( ) ( ) 2 l p l p + β + Ξ΅ β + β + Ξ΅ 0 0 0 0 l p i l p i 2 Q M 2 2 m m N N 3 1 2 d l k β« l = β Ξ β‘ 2 0 οΏ½ ( ) p i m C ( ) 0 2 3 β β Ξ΅ N 2 2 Ο m 2 l k i N 2 1 2 β§ Ξ Ξ β« βͺ βͺ 1 1 m β« β« = β Ξ + 2 2 ( ) β¨ β¬ N i C dl k dl l Ο 0 + + Ξ΅ β β Ξ΅ 2 2 βͺ βͺ β© k i l k i β 1 2 0 0 Q M β§ β« β β βͺ 2 βͺ 1 k k = β Ξ Ξ + + β‘ β Ξ Ξ 2 2 ( ) 2 ( ) ( ) β¨ O β¬ β β i m C i iC I 0 Ο Ο Ο Ξ β 0 0 2 N 4 4 βͺ βͺ β β© β non- absorbed in absorbed in Ξ 2 ~ ( ) iC k 2 analytic C Ξ 0 ( ) C Ξ 2 ( ) in E etc. 6/2/2009 v. Kolck, Intro to EFTs 99
Ξ Ξ β§ β« ( ) m C Ξ β ( ) β‘ Ξ β Ξ + = ( ) ( ) 1 ( ) β¦ 0 R β¨ β¬ N C C C C Ξ 0 0 0 0 Ο 2 2 β© β m + Ξ 1 ( ) N C Ο 0 2 2 m Ξ β β‘ Ξ β Ξ + β¦ ( ) 2 ( ) ( ) ( ) R N C C C C 2 2 2 0 Ο Ξ 4 β¦ NaΓ―ve dimensional analysis Ο Ο 4 4 β‘ ( ) ( ) βΌ R R βΌ C C M M 0 0 0 nuc m M m M 0 N N nuc Ο 4 m β‘ ( ) ( ) ( )2 βΌ R R R N βΌ C C C M M 2 2 0 Ο 2 4 2 0 m M M M 2 N n uc nuc etc. 6/2/2009 v. Kolck, Intro to EFTs 100
Recommend
More recommend