introduction
play

Introduction Feynman Integrals Calculus became in recent decades a - PowerPoint PPT Presentation

I NTRODUCTION TO D IFFERENTIAL E QUATIONS FOR F EYNMAN I NTEGRALS Oleksandr Gituliar http://gituliar.net/capp17 II. Institut fr Theoretische Physik Universitt Hamburg Computer Algebra in Particle Physics 2017 DESY (Hamburg) Introduction


  1. I NTRODUCTION TO D IFFERENTIAL E QUATIONS FOR F EYNMAN I NTEGRALS Oleksandr Gituliar http://gituliar.net/capp17 II. Institut für Theoretische Physik Universität Hamburg Computer Algebra in Particle Physics 2017 DESY (Hamburg)

  2. Introduction Feynman Integrals Calculus — became in recent decades a science on its own. � 1 d d p 1 δ ( p 2 1 )...d d p m δ ( p 2 d d l 1 ...d d l n m ) n i ∈ Z D n 1 1 ... D n k � �� � � �� � k loops legs Numerical methods • Sector Decomposition, Subtraction Schemes, . . . Analytical methods • Feynman/Schwinger/Mellin-Barnes parametrization • Integration-By-Parts reduction Chetyrkin, Tkachov ’81 – Laporta algorithm Laporta ’00: AIR , FIRE , Reduze – Symbolic reduction: LiteRed Lee ’12 – private implementations • Method of Differential Equations Kotikov ’91, Remiddi ’97 – Epsilon Form Henn ’13 – Lee algorithm Lee ’14: Fuchsia , Epsilon • . . .

  3. Introduction Feynman Integrals Calculus — became in recent decades a science on its own. � 1 d d p 1 δ ( p 2 1 )...d d p m δ ( p 2 d d l 1 ...d d l n m ) n i ∈ Z D n 1 1 ... D n k � �� � � �� � k loops legs Integration-By-Parts reduction • Integral Families – integration momenta * loop – l 1 ,..., l n only * phase-space – p 1 ,..., p m only * mixed – set of denominators (topology) – master integrals • Reduction – any integral (from the family) in terms of masters including derivatives * – completely analytical – highly automated

  4. Plan for Today You will learn: • Integration-by-Parts Reduction – LiteRed • Differential Equations in Epsilon Form – Fuchsia • Examples 1. One-Loop Integral 2. Two-Loop Phase-Space Integral • Partial Fractioning • Expansion of Hypergeometric Functions

  5. Method of Differential Equations 1. Construct System of ODE (medium) • from definition (e.g. special functions) • from IBP rules – highly automated – AIR , FIRE , LiteRed , Reduze2 2. Find Epsilon Form (hard) • automated • Lee method: Fuchsia , epsilon 3. Solve System of ODE (easy) 4. Find Constants of Integration (medium) • depends on the problem

  6. Example 1 One-Loop Massive Self-Energy l p p � p µ p ν − g µν p 2 � = Π µν ab ( p 2 , m ) = δ ab Π ( p 2 , m ) l − p � Π ( p 2 , m ) = d n l F ( p , l , m ) • Arguments : from vectors to scalars F ( p , l , m ) → F ( l 2 , l · p , p 2 , m ) • In general, the number of scalar integration variables is given by N ( L , E ) = L ( L + 1) O ( L 2 ) ← another source of growing + LE ∼ complexity at higher orders 2 where E – number of external momenta , L – number of loop momenta – 1-loop propagator: N (1,1) = 2 – 4-loop propagator: N (4,1) = 14 (ask Jos Vermaseren about details)

  7. Example 1 Integration-by-Parts Reduction • The problem contains two denominators D 1 = l 2 − m 2 D 2 = ( l − p ) 2 − m 2 which map into our integration invariants in a unique way F ( p , l , m ) → F ( l 2 , l · p , p 2 , m ) → F ( D 1 , D 2 , p 2 , m ) • One integral family � 1 d n l F ( n 1 , n 2 ) = D n 1 1 D n 2 2 <<LiteRed‘ SetDim[n]; Declare[{m2}, Number, {l,p}, Vector]; NewBasis[$b, {sp[l]-m2, sp[l-p]-m2}, {l}, Directory->"b.ibp"]; GenerateIBP[$b]; AnalyzeSectors[$b]; FindSymmetries[$b];

  8. Example 1 Integration-by-Parts Reduction In dimensional regularization the integral over a total derivative is zero. � d � � d n l i q µ F ( p 1 ,..., l 1 ,...) d l µ i where q is arbitrary external or internal momenta. IBP[$b]

  9. Example 1 Master Integrals SolvejSectors /@ UniqueSectors[$b] MIs[$b] > {j[$b,0,1], j[$b,1,1]} • We obtain two master integrals � � 1 1 d n l d n l F 1 = F (0,1) = F 2 = F (1,1) = � l 2 − m 2 � � ( l − p ) 2 − m 2 � ( l − p ) 2 − m 2 • Any other integral is a linear combination of only these two, e.g., n − 2 n − 3 F (2,1) = 2 m 2 ( p 2 − 4 m 2 ) F 1 + p 2 − 4 m 2 F 2 • We can check that since we can do l → l + p transformation F (0,1) = F (1,0)

  10. Example 1 Differential Equations $ds = Dinv[#,sp[p,p]]& /@ MIs[$b] // IBPReduce; $ode = Coefficient[#, MIs[$b]]& /@ $ds; • This code produces a system of differential equations d F 1 d p 2 = 0 2 m 2 − ǫ p 2 d F 2 2 − 2 ǫ p 2 ( p 2 − 4 m 2 ) F 1 + p 2 ( p 2 − 4 m 2 ) F 2 d p 2 = where we work in n = 4 − 2 ǫ space-time dimensions This system is simple and we could solve it right away using <your favourite> method. Today, I want to demonstrate you how this and many other systems can be solved throug using their ǫ -form. As you will see this is a highly automated task. Exercise Derive another system of differential equations, but this time in m 2 . (Hint: use Fromj , D , and Toj functions instead of Dinv ).

  11. I. Epsilon Form • Classical Notation d F 1 d x = A 11 ( x , ǫ ) F 1 + A 12 ( x , ǫ ) F 2 d F 2 d x = A 21 ( x , ǫ ) F 1 + A 22 ( x , ǫ ) F 2 • Matrix Notation � A 11 ( x , ǫ ) � � F 1 � d ¯ F A 12 ( x , ǫ ) d x = A ( x , ǫ ) ¯ ¯ F where A = and F = A 21 ( x , ǫ ) A 22 ( x , ǫ ) F 2 It is very convenient to have our system in the epsilon form d G d x = ǫ B ( x ) G since in this case we can easily find the solution to any order in ǫ parameter, as we will see on the next slide. Some physical examples may lead to systems with ∼ 500 equations. Hence, it is very impor- tant to make this task automatic.

  12. II. A few words on Fuchsia Input • System of Ordinary Differential Equations A ( x , ǫ ,...), i.e., d F d x = A ( x , ǫ ,...) F ( x , ǫ ,...) Output • Equivalent System in the Epsilon Form d G d x = ǫ B ( x ,...) G ( x , ǫ ,...) • Corresponding Basis Transformation F ( x , ǫ ,...) = T ( x , ǫ ,...) × G ( x , ǫ ,...) • Other Operations – apply custom transformation – variable change – "sort" to block-diagonal form

  13. II. A few words on Fuchsia • Based on the Lee algorithm Lee ’14 – support additional symbols – alternative implementation: epsilon • Open-Source and Free Gituliar, Magerya ’16 ’17 – http://github.com/gituliar/fuchsia • Implemented in Python – SageMath – Maxima – Maple (optional) • Algorithm 1. Fuchsification (Jordan form) Get rid of apparent singularities 2. Normalization (eigenvalues, eigenvectors) Balance eigenvalues to α ǫ form 3. Factorization (solve linear equations) Reduce to the epsilon form

  14. II. A few words on Fuchsia

  15. Example 1 Epsilon Form by Fuchsia Let us introduce a new variable y , such that y 2 p 2 = − 4 m 2 1 − y 2 The new equations look as d F 1 d y = 0 � � d F 2 d y = 1 − ǫ ǫ 1 + y − 1 ǫ y m 2 F 1 + F 2 1 − y − y With the help of Fuchsia we find a new basis G 1 , G 2 given by the system F 1 = 4(1 − 2 ǫ ) 3(1 − ǫ ) G 1 3 m 2 G 1 − 2 4 F 2 = yG 2 For this basis the differential equations are the epsilon form d G 1 d y = 0 � � � � d G 2 2 ǫ ǫ ǫ ǫ G 1 − G 2 d y = 1 + y + 1 − y − 3 m 2 1 − y 1 + y

  16. III. Solutions We are looking for the solution of a given system of ordinary differential equations in the epsilon form d G d x = ǫ B ( x ) G as a Laurent series in ǫ G ( x , ǫ ) = G 0 ( x ) + G 1 ( x ) ǫ + G 2 ( x ) ǫ 2 + ... Let us put this "solution" into the initial equation d G 0 d x + d G 1 d x ǫ + d G 2 d x ǫ 2 + ... = ǫ B ( x ) G 0 + ǫ 2 B ( x ) G 1 we get d G 0 d G 1 d G 2 d G n d x = 0, d x = B ( x ) G 0 , d x = B ( x ) G 1 ... d x = B ( x ) G n − 1 This system can be easily solved (as promised) � � � � � G 0 = C 0 , G 1 = C 1 + d xB ( x ) C 0 , G 2 = C 2 + d xB ( x ) C 1 + d xB ( x ) C 0 ... � G n ( x ) = C n + d xB ( x ) G n − 1

  17. III. Solutions My implementation of the solution algorithm, which I use to get results for the next slide. SolveODE[m_, x_, ep_, n_, c_] := Module[ {$i, $j, $n, $sol, $sol0, $sol1}, $n = Length[m]; $sol[0] = Table[c[$j,0], {$j,1,$n}]; For[$i=1, $i<=n, $i++, $sol0 = Table[c[$j,$i], {$j,1,$n}]; $sol1 = Integrate[Dot[#,$sol[$i-1]],x]& /@ m; $sol[$i] = $sol0 + $sol1; ]; Sum[ep^$i*$sol[$i], {$i,0,n}] ];

  18. Example 1 Solutions • Master #1 F 1 ( y , m 2 ) = 4 1 + 4 � � 3 C (0) C (1) 1 − C (0) ǫ + ... 1 3 • Master #2 4 C (0) C (0) � � 1 − y �� ǫ � � F 2 ( y , m 2 ) = 1 2 4 yC (1) 1 − 6 m 2 C (1) 4 C (1) 1 − 6 m 2 C (0) ln 3 m 2 − + 2 + 3 m 2 y 2 y 1 + y • Finally, we need to find unknown integration constants whcih are functions of m 2 and ǫ , i.e. C (0) C (1) 1 ( m 2 , ǫ ), 1 ( m 2 , ǫ ), ... C (0) C (1) 2 ( m 2 , ǫ ), 2 ( m 2 , ǫ ), ...

  19. Example 1 Integration Constants #1 Master #1 (from Fuchsia ) F 1 ( y , m 2 ) = 4 1 + 4 � � 3 C (0) C (1) 1 − C (0) ǫ + ... 1 3 Closed-form solution from the literature (see Smirnov’s book) F (0, n ) = ( − 1) n Γ ( n − 2 + ǫ ) ( m 2 ) 2 − ǫ − n Γ ( n ) F 1 ( y , m 2 ) = F (0,1) = m 2 ǫ + m 2 � 1 − γ E − ln m 2 � + ... Result #1 1 = 3 m 2 � 2 − γ E − ln m 2 � 1 = 3 m 2 C (0) C (1) 4 ǫ 4 ǫ

  20. Example 1 Integration Constants #2 Result #1 1 = m 2 � 1 − γ E − ln m 2 � 1 = m 2 C (0) C (1) ǫ ǫ Master #2 (with Result #1 substituted) � � 2 y − γ E y − 2 C (0) 1 − y 2 − y ln m 2 + ln F 2 ( y , m 2 ) = 1 1 + y + ... ǫ + y We require that at the limit y → 0 ( p 2 → 0) our result is regular. This leads to the solution C 0 2 = 0 Result #2 � 1 − y � F 2 ( y , m 2 ) = 1 ǫ + 2 − γ E − ln m 2 + 1 y ln + ... 1 + y This is in agreement with T.Riemann Monday’s lecture!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend