intro to mathematical reasoning via discrete mathematics
play

Intro to Mathematical Reasoning via Discrete Mathematics - PowerPoint PPT Presentation

Intro to Mathematical Reasoning via Discrete Mathematics CMSC-37115 Instructor: Laszlo Babai University of Chicago Week 1, Thursday, October 1, 2020 CMSC-37115 Mathematical Reasoning Sets, subsets setmaker bar such that A = { x 2 | 0


  1. Intro to Mathematical Reasoning via Discrete Mathematics CMSC-37115 Instructor: Laszlo Babai University of Chicago Week 1, Thursday, October 1, 2020 CMSC-37115 Mathematical Reasoning

  2. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } CMSC-37115 Mathematical Reasoning

  3. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } A = { a , b , c , d , e } B = { a , b , e } = ⇒ B ⊆ A subset B ⊆ A if ( ∀ x )(( x ∈ B ) = ⇒ ( x ∈ A )) CMSC-37115 Mathematical Reasoning

  4. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } A = { a , b , c , d , e } B = { a , b , e } = ⇒ B ⊆ A subset B ⊆ A if ( ∀ x )(( x ∈ B ) = ⇒ ( x ∈ A )) DO The “subset” relation is CMSC-37115 Mathematical Reasoning

  5. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } A = { a , b , c , d , e } B = { a , b , e } = ⇒ B ⊆ A subset B ⊆ A if ( ∀ x )(( x ∈ B ) = ⇒ ( x ∈ A )) DO The “subset” relation is transitive A ⊆ B ⊆ C = ⇒ A ⊆ C CMSC-37115 Mathematical Reasoning

  6. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } A = { a , b , c , d , e } B = { a , b , e } = ⇒ B ⊆ A subset B ⊆ A if ( ∀ x )(( x ∈ B ) = ⇒ ( x ∈ A )) DO The “subset” relation is transitive A ⊆ B ⊆ C = ⇒ A ⊆ C A = B if A ⊆ B and B ⊆ A , i.e., A = B if ( ∀ x )( x ∈ A ⇔ x ∈ B ) Example: { a , c , a , b , c } = { a , b , c } . CMSC-37115 Mathematical Reasoning

  7. Sets, subsets setmaker bar “such that” A = { x 2 | 0 ≤ x ≤ 3 } = { 0 , 1 , 4 , 9 } A = { a , b , c , d , e } B = { a , b , e } = ⇒ B ⊆ A subset B ⊆ A if ( ∀ x )(( x ∈ B ) = ⇒ ( x ∈ A )) DO The “subset” relation is transitive A ⊆ B ⊆ C = ⇒ A ⊆ C A = B if A ⊆ B and B ⊆ A , i.e., A = B if ( ∀ x )( x ∈ A ⇔ x ∈ B ) Example: { a , c , a , b , c } = { a , b , c } . Powerset of A : P ( A ) = { all subsets of A } CMSC-37115 Mathematical Reasoning

  8. Operations with sets DEFINITIONS Union A ∪ B = { x | ( x ∈ A ) ∨ ( x ∈ B ) } Intersection A ∩ B = { x | ( x ∈ A ) ∧ ( x ∈ B ) } Difference A \ B = { x | ( x ∈ A ) ∧ ( x � B ) } A , B ⊆ Ω “universe” A = Ω \ A Complement CMSC-37115 Mathematical Reasoning

  9. Operations with sets DEFINITIONS Union A ∪ B = { x | ( x ∈ A ) ∨ ( x ∈ B ) } Intersection A ∩ B = { x | ( x ∈ A ) ∧ ( x ∈ B ) } Difference A \ B = { x | ( x ∈ A ) ∧ ( x � B ) } A , B ⊆ Ω “universe” A = Ω \ A Complement CMSC-37115 Mathematical Reasoning

  10. Indentities for set operations DO: Distributivity A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) CMSC-37115 Mathematical Reasoning

  11. Indentities for set operations DO: Distributivity A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) De Morgan’s laws A ∪ B = A ∩ B A ∩ B = A ∪ B CMSC-37115 Mathematical Reasoning

  12. Indentities for set operations DO: Distributivity A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) De Morgan’s laws A ∪ B = A ∩ B A ∩ B = A ∪ B | A | cardinality of A (size of A , number of elements of A ) Example: |{ a , c , a , b , c }| = 3 CMSC-37115 Mathematical Reasoning

  13. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | CMSC-37115 Mathematical Reasoning

  14. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | DO | A | = n = ⇒ |P ( A ) | = CMSC-37115 Mathematical Reasoning

  15. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | | A | = n = ⇒ |P ( A ) | = 2 n DO CMSC-37115 Mathematical Reasoning

  16. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | | A | = n = ⇒ |P ( A ) | = 2 n DO Cartesian product A × B = { ( a , b ) | a ∈ A , b ∈ B } CMSC-37115 Mathematical Reasoning

  17. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | | A | = n = ⇒ |P ( A ) | = 2 n DO Cartesian product A × B = { ( a , b ) | a ∈ A , b ∈ B } DO | A × B | = | A | · | B | CMSC-37115 Mathematical Reasoning

  18. Indentities for cardinalities DO Modular identity | A ∩ B | + | A ∪ B | = | A | + | B | | A | = n = ⇒ |P ( A ) | = 2 n DO Cartesian product A × B = { ( a , b ) | a ∈ A , b ∈ B } DO | A × B | = | A | · | B | CMSC-37115 Mathematical Reasoning

  19. Sumsets DEF shifting A ⊆ Z , b ∈ Z A + b = { a + b | a ∈ A } Example: If A = { 1 , 2 , 4 } then A + 2 = { 3 , 4 , 6 } CMSC-37115 Mathematical Reasoning

  20. Sumsets DEF shifting A ⊆ Z , b ∈ Z A + b = { a + b | a ∈ A } Example: If A = { 1 , 2 , 4 } then A + 2 = { 3 , 4 , 6 } DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } Example B = { 2 , 4 } then A + B = ( A + 2 ) ∪ ( A + 4 ) = { 3 , 4 , 6 , 5 , 6 , 8 } = { 3 , 4 , 5 , 6 , 8 } CMSC-37115 Mathematical Reasoning

  21. Sumsets DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } True/false | A + B | ≥ | A | CMSC-37115 Mathematical Reasoning

  22. Sumsets DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } True/false | A + B | ≥ | A | A + ∅ = CMSC-37115 Mathematical Reasoning

  23. Sumsets DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } True/false | A + B | ≥ | A | A + ∅ = ∅ Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≤ CMSC-37115 Mathematical Reasoning

  24. Sumsets DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } True/false | A + B | ≥ | A | A + ∅ = ∅ Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≤ 15 CMSC-37115 Mathematical Reasoning

  25. Sumsets DEF sumset A , B ⊆ Z A + B = { a + b | a ∈ A , b ∈ B } True/false | A + B | ≥ | A | A + ∅ = ∅ Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≤ 15 DO | A + B | ≤ | A | · | B | CMSC-37115 Mathematical Reasoning

  26. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ CMSC-37115 Mathematical Reasoning

  27. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 CMSC-37115 Mathematical Reasoning

  28. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? CMSC-37115 Mathematical Reasoning

  29. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } CMSC-37115 Mathematical Reasoning

  30. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming CMSC-37115 Mathematical Reasoning

  31. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } CMSC-37115 Mathematical Reasoning

  32. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } kA = { ka | a ∈ A } Example: 2 Z = CMSC-37115 Mathematical Reasoning

  33. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } kA = { ka | a ∈ A } Example: 2 Z = { even numbers } CMSC-37115 Mathematical Reasoning

  34. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } kA = { ka | a ∈ A } Example: 2 Z = { even numbers } 2 Z + 1 = CMSC-37115 Mathematical Reasoning

  35. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } kA = { ka | a ∈ A } Example: 2 Z = { even numbers } 2 Z + 1 = { odd numbers } CMSC-37115 Mathematical Reasoning

  36. Sumset Question. | A | = 3 , | B | = 5 = ⇒ | A + B | ≥ 7 Example when | A + B | = 7 ? A = { 0 , 1 , 2 } , B = { 0 , 1 , 2 , 3 , 4 } , A + B = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } HW (1/12) | A + B | ≥ | A | + | B | − 1 assuming A , B � ∅ 2 A := { 2 a | a ∈ A } kA = { ka | a ∈ A } Example: 2 Z = { even numbers } 2 Z + 1 = { odd numbers } DO Find a small set B s.t. 2 Z + B = Z CMSC-37115 Mathematical Reasoning

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend