intro to mathematical reasoning via discrete mathematics
play

Intro to Mathematical Reasoning via Discrete Mathematics - PowerPoint PPT Presentation

Intro to Mathematical Reasoning via Discrete Mathematics CMSC-37115 Instructor: Laszlo Babai University of Chicago Week 2, Tuesday, October 6, 2020 CMSC-37115 Mathematical Reasoning Functions f : A B assigns value f ( a ) B to each


  1. Intro to Mathematical Reasoning via Discrete Mathematics CMSC-37115 Instructor: Laszlo Babai University of Chicago Week 2, Tuesday, October 6, 2020 CMSC-37115 Mathematical Reasoning

  2. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B CMSC-37115 Mathematical Reasoning

  3. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B ( ∀ a ∈ A )( ∃ ! b ∈ B )( f ( a ) = b ) CMSC-37115 Mathematical Reasoning

  4. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B range: range ( f ) = { f ( a ) | a ∈ A } values actually taken CMSC-37115 Mathematical Reasoning

  5. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B range ( f ) = { f ( a ) | a ∈ A } range: values actually taken range ( f ) ⊆ B CMSC-37115 Mathematical Reasoning

  6. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B range: range ( f ) = { f ( a ) | a ∈ A } values actually taken Example: A = { Alabama, Alaska, Arizona, Arkansas, California, . . . , Wisconsin, Wyoming } B = { 3 , 4 , . . . , 538 } Table: el ( x ) : number of electors from state x x AL AK AZ AR CA CO CT DE DC FL GA . . . WI WY el ( x ) 9 3 11 6 55 9 7 3 3 29 16 10 3 range ( el ) = { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 20 , 29 , 38 , 55 } CMSC-37115 Mathematical Reasoning

  7. Functions f : A → B assigns value f ( a ) ∈ B to each a ∈ A domain: set A codomain: set B range: range ( f ) = { f ( a ) | a ∈ A } values actually taken Example: A = { Alabama, Alaska, Arizona, Arkansas, California, . . . , Wisconsin, Wyoming } B = { 3 , 4 , . . . , 538 } Table: el ( x ) : number of electors from state x x AL AK AZ AR CA CO CT DE DC FL GA . . . WI WY el ( x ) 9 3 11 6 55 9 7 3 3 29 16 10 3 range ( el ) = { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 18 , 20 , 29 , 38 , 55 } | range ( el ) | = 19 CMSC-37115 Mathematical Reasoning

  8. Injection, surjection, bijection Notation: B A set of A → B functions f ∈ B A injective if there are no collisions, i.e., ( ∀ u , v ∈ A )( f ( u ) = f ( v ) ⇒ u = v ) f ∈ B A surjective if range ( f ) = B , i.e., ( ∀ z ∈ B )( ∃ u ∈ A )( f ( u ) = z ) CMSC-37115 Mathematical Reasoning

  9. Injection, surjection, bijection Notation: B A set of A → B functions f ∈ B A injective if there are no collisions, i.e., ( ∀ u , v ∈ A )( f ( u ) = f ( v ) ⇒ u = v ) f ∈ B A surjective if range ( f ) = B , i.e., ( ∀ z ∈ B )( ∃ u ∈ A )( f ( u ) = z ) f ∈ B A bijective if injective and surjective, i.e., ( ∀ z ∈ B )( ∃ ! u ∈ A )( f ( u ) = z ) CMSC-37115 Mathematical Reasoning

  10. Injection, surjection, bijection Notation: B A set of A → B functions f ∈ B A injective if there are no collisions, i.e., ( ∀ u , v ∈ A )( f ( u ) = f ( v ) ⇒ u = v ) f ∈ B A surjective if range ( f ) = B , i.e., ( ∀ z ∈ B )( ∃ u ∈ A )( f ( u ) = z ) f ∈ B A bijective if injective and surjective, i.e., ( ∀ z ∈ B )( ∃ ! u ∈ A )( f ( u ) = z ) existence of u means CMSC-37115 Mathematical Reasoning

  11. Injection, surjection, bijection Notation: B A set of A → B functions f ∈ B A injective if there are no collisions, i.e., ( ∀ u , v ∈ A )( f ( u ) = f ( v ) ⇒ u = v ) f ∈ B A surjective if range ( f ) = B , i.e., ( ∀ z ∈ B )( ∃ u ∈ A )( f ( u ) = z ) f ∈ B A bijective if injective and surjective, i.e., ( ∀ z ∈ B )( ∃ ! u ∈ A )( f ( u ) = z ) existence of u means surjectivity CMSC-37115 Mathematical Reasoning

  12. Injection, surjection, bijection Notation: B A set of A → B functions f ∈ B A injective if there are no collisions, i.e., ( ∀ u , v ∈ A )( f ( u ) = f ( v ) ⇒ u = v ) f ∈ B A surjective if range ( f ) = B , i.e., ( ∀ z ∈ B )( ∃ u ∈ A )( f ( u ) = z ) f ∈ B A bijective if injective and surjective, i.e., ( ∀ z ∈ B )( ∃ ! u ∈ A )( f ( u ) = z ) existence of u means surjectivity uniqueness of u means injectivity non-uniqueness means collision: f ( u 1 ) = f ( u 2 ) = z CMSC-37115 Mathematical Reasoning

  13. Injection, surjection, bijection Notation: f : A → B (domain → codomain) if f ( a ) = b then write f : a �→ b ( a maps to b ) L A T EX a \ mapsto b CMSC-37115 Mathematical Reasoning

  14. Injection, surjection, bijection Notation: f : A → B (domain → codomain) if f ( a ) = b then write f : a �→ b ( a maps to b ) L A T EX a \ mapsto b √ f ( x ) = x 2 Example: − 3 �→ 9, 2 �→ 2 CMSC-37115 Mathematical Reasoning

  15. Injection, surjection, bijection Notation: f : A → B (domain → codomain) if f ( a ) = b then write f : a �→ b ( a maps to b ) L A T EX a \ mapsto b √ f ( x ) = x 2 Example: − 3 �→ 9, 2 �→ 2 Terminology function = map or mapping injective function = injective map = injection surjective function = surjective map = surjection bijective function = bijective map = bijection CMSC-37115 Mathematical Reasoning

  16. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | CMSC-37115 Mathematical Reasoning

  17. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | CMSC-37115 Mathematical Reasoning

  18. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } CMSC-37115 Mathematical Reasoning

  19. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | CMSC-37115 Mathematical Reasoning

  20. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | Proof via surjection We know: | A × B | = | A | · | B | . Goal: Find surjection f : A × B → A + B . CMSC-37115 Mathematical Reasoning

  21. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | Proof via surjection We know: | A × B | = | A | · | B | . Goal: Find surjection f : A × B → A + B . So for ( a , b ) ∈ A × B , need to define f ( a , b ) CMSC-37115 Mathematical Reasoning

  22. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | Proof via surjection We know: | A × B | = | A | · | B | . Goal: Find surjection f : A × B → A + B . So for ( a , b ) ∈ A × B , need to define f ( a , b ) CHAT! CMSC-37115 Mathematical Reasoning

  23. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | Proof via surjection We know: | A × B | = | A | · | B | . Goal: Find surjection f : A × B → A + B . So for ( a , b ) ∈ A × B , need to define f ( a , b ) CHAT! f ( a , b ) := a + b CMSC-37115 Mathematical Reasoning

  24. Comparing cardinalities If ∃ A → B surjection then | A | ≥ | B | If ∃ A → B injection then | A | ≤ | B | If ∃ A → B bijection then | A | = | B | Example. A , B ⊆ Z Sumset A + B = { a + b | a ∈ A , b ∈ B } Proposition (little theorem) | A + B | ≤ | A | · | B | Proof via surjection We know: | A × B | = | A | · | B | . Goal: Find surjection f : A × B → A + B . So for ( a , b ) ∈ A × B , need to define f ( a , b ) CHAT! f ( a , b ) := a + b Why is this function surjective? The definition of A + B says: A + B = range ( f ) . (Check!) CMSC-37115 Mathematical Reasoning

  25. Comparison via injection If ∃ A → B injection then | A | ≤ | B | CMSC-37115 Mathematical Reasoning

  26. Comparison via injection If ∃ A → B injection then | A | ≤ | B | This is a famous “principle.” What is it called? CMSC-37115 Mathematical Reasoning

  27. Comparison via injection If ∃ A → B injection then | A | ≤ | B | This is a famous “principle.” What is it called? Pigeon Hole Principle. If | A | > | B | then every function f : A → B has a collision. CMSC-37115 Mathematical Reasoning

  28. Comparison via injection If ∃ A → B injection then | A | ≤ | B | This is a famous “principle.” What is it called? Pigeon Hole Principle. If | A | > | B | then every function f : A → B has a collision. Notation: For n ≥ 0 we write [ n ] = { 1 , . . . , n } Examples: [ 3 ] = { 1 , 2 , 3 } , [ 1 ] = { 1 } , [ 0 ] = CMSC-37115 Mathematical Reasoning

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend