into useful electrical energy using piezoelectric 2d
play

into useful electrical energy using piezoelectric 2D materials G. - PowerPoint PPT Presentation

Conversion of mechanical noise into useful electrical energy using piezoelectric 2D materials G. Abadal and F. Torres NOEMS for ENERGY LABORATORY (NANERG LAB) Departament dEnginyeria Electrnica, Escola dEnginyeria, Universitat Autnoma


  1. Conversion of mechanical noise into useful electrical energy using piezoelectric 2D materials G. Abadal and F. Torres NOEMS for ENERGY LABORATORY (NANERG LAB) Departament d’Enginyeria Electrònica, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), SPAIN M. López-Suárez and L. Gammaitoni NiPS Laboratory, Dipartimento di Fisica - Università di Perugia, I-06123 Perugia, ITALY W.J. Venstra Kavli Institute of Nanoscience, Delft University of Technology, Delft 2628CJ, THE NETHERLANDS R. Rurali Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain 7 th International Conference on Unsolved Problems on Noise Barcelona, Casa Convalescència, Spain, July 13-17 2015

  2. Energy Harvesting (EH) Thomas, J., M. Qidwai, and J. Kellogg, Energy scavenging for small-scale unmanned systems. Journal of Power Sources, 2006. 159 (2): p. 1494-1509.

  3. Energy Harvesting (EH) Thomas, J., M. Qidwai, and J. Kellogg, Energy scavenging for small-scale unmanned systems. Journal of Power Sources, 2006. 159 (2): p. 1494-1509.

  4. Vibration Energy Harvesting (VEH) Thomas, J., M. Qidwai, and J. Kellogg, Energy scavenging for small-scale unmanned systems. Journal of Power Sources, 2006. 159 (2): p. 1494-1509.

  5. Vibration Energy Harvesting (VEH) NO Characteristic frequencies Characteristic frequencies Wide band sources Narrow band sources Running car Running train From: Neri, I., Travasso, F., Mincigrucci, R., From S. Roundy et al., Computer Vocca, H., Orfei, F., & Gammaitoni, L.; Journal Communications, 26, 1131 – 1144, 2003 of Intelligent Material Systems and Structures, 2012

  6. Vibration Energy Harvesting (VEH) NO Characteristic frequencies Characteristic frequencies Wide band sources Narrow band sources Running car Convert efficiently the energy from mechanical NOISE (wide band Running train spectrum) into electrical energy From: Neri, I., Travasso, F., Mincigrucci, R., From S. Roundy et al., Computer Vocca, H., Orfei, F., & Gammaitoni, L.; Journal Communications, 26, 1131 – 1144, 2003 of Intelligent Material Systems and Structures, 2012

  7. Outline  Introduction. Wideband Vibration Energy Harvesting (WBVEH)  From mm-scale to m m-scale bistable WBVEH  nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials  Conclusions

  8. Wideband Vibration Energy Harvesting. Bistable approach Linear resonator Energy Position Vibration amplitude (a.u.) Position (a.u.) Velocity (a.u.) Frequency (a.u.)

  9. Wideband Vibration Energy Harvesting. Bistable approach Linear Non-Linear resonator resonator Energy Energy Position Position Vibration amplitude (a.u.) Position (a.u.) Velocity (a.u.) Frequency (a.u.)

  10. Wideband Vibration Energy Harvesting. Bistable approach Linear Non-Linear Non-Linear resonator resonator Energy Energy Energy resonator Position Position Position Vibration amplitude (a.u.) Position (a.u.) Velocity (a.u.) Frequency (a.u.)

  11. Outline  Introduction. Wideband Vibration Energy Harvesting (WBVEH)  From mm-scale to m m-scale bistable WBVEH  nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials  Conclusions

  12. Wideband Vibration Energy Harvesting. Bistable approach Total Potential Energy (pJ) q=10 fC 0,3 y x d=10 m m z d=3 m m 0,2 d=2 m m 0,1 Cantilever q 1 0,0 d q 2 -0,1 Counter Electrode -6 -4 -2 0 2 4 6 (CE) Cantilever vertical displacement, z ( m m)

  13. Wideband Vibration Energy Harvesting. Bistable approach Total Potential Energy (pJ) q=10 fC 0,3 y x d=10 m m z d=3 m m 0,2 d=2 m m 0,1 Cantilever q 1 0,0 d q 2 -0,1 Counter Electrode -6 -4 -2 0 2 4 6 (CE) Cantilever vertical displacement, z ( m m)

  14. Wideband Vibration Energy Harvesting. Bistable approach Lateral view Top view gap CE cantilever Total Potential Energy (pJ) q=10 fC 0,3 y x d=10 m m z d=3 m m 0,2 d=2 m m 0,1 Cantilever q 1 0,0 d q 2 -0,1 Counter Electrode -6 -4 -2 0 2 4 6 (CE) Cantilever vertical displacement, z ( m m)

  15. Wideband Vibration Energy Harvesting. Bistable approach F rms =4nN 6 Vertical cant. displ., z ( m m) d=2,5 m m 4 2 0 -2 d=10,0 m m -4 d=3,6 m m -6 0,00 0,01 0,02 0,03 0,04 Time (s) Total Potential Energy (pJ) q=10 fC 0,3 y x d=10 m m z d=3 m m 0,2 d=2 m m 0,1 Cantilever q 1 0,0 d q 2 -0,1 Counter Electrode -6 -4 -2 0 2 4 6 (CE) Cantilever vertical displacement, z ( m m)

  16. Outline  Introduction. Wideband Vibration Energy Harvesting (WBVEH)  From mm-scale to m m-scale bistable WBVEH  nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials  Conclusions

  17. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials     w  x l x  0.25 Elastic potential energy (aJ) 0.20 0.15 0.10  V 0.05 0.00 -0.05 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Displacement (nm)

  18. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials d E

  19. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. GRAPHENE Langevin equation Spring-mass model  E z ( ) e =0.27%      m  z  b z  F t ( )  eff rms z  th F 4 k TbB e =0.12% rms B  T K @ 300 e =0% k B T

  20. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. GRAPHENE

  21. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. h-BN F rms =5 pN P=0.15 pW PD*=15 mW/cm 3 *A realistic V=10 m m 3 is considered to include mechanical anchors

  22. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. h-BN

  23. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. h-BN 233x30 supercell of the rectangular 4-atom unit: 100.8nm x 7.5nm armchair nanoribbon 27,960 atoms. Molecular dynamics : NVT ensemble using LAMMPS code and Langevin thermostat. Snapshot of the dynamics of a BN nanoribbon subjected to a compression of 1.5%.

  24. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. h-BN F rms =1.3 nN P=8 pW PD*=80 mW/cm 3 *A realistic V=100 m m 3 is considered to include mechanical anchors

  25. nm-scale bistable WBVEH: NEMS based on piezoelectric 2D materials. h-BN

  26. Conclusions • Non-linear based strategies for the implementation of WBVEH can be downscaled to the m m-scale using MEMS and to the nm-scale using NEMS. • The advantages of downscaling are: – The adaption to low intensity mechanical noise sources. – The enhancement of the harvested power density . • However, there is a lack of experimental results to validate the predicted performance of the studied nanoelectromechanical converters based on piezoelectric 2D materials . -2 10 -4 10 -2 -3 ) 10 Lopez-Suarez '13 Power density (W·cm -4 10 -6 10 -3 10 m m-scale Gammaitoni '09 Power (W) Frms (N) -6 -8 10 10 Lopez-Suarez '14 mm-scale -4 10 -8 200 nm -10 10 10 nm-scale -5 10 -10 10 -12 10 -6 10 -12 10 -14 10 -12 -10 -8 -6 -4 -2 0 2 10 10 10 10 10 10 10 10 3 ) Volume (cm

  27. Gabriel Abadal Francesc Torres NOEMS for ENERGY LABORATORY NANO-OPTOELECTROMECHANICAL SYSTEMS FOR ENERGY LABORATORY http://grupsderecerca.uab.cat/nanerglab/ Miquel López-Suárez Warner Venstra Riccardo Rurali Luca Gammaitoni NiPS Lab, U.Perugia TU-Delft ICMAB NiPS Lab, U.Perugia Italy The Netherlands Spain Italy

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend