interstellar linear polarization discovery
play

Interstellar linear polarization: discovery 1949 William Hiltner, - PowerPoint PPT Presentation

Tracing magnetic fields through interstellar polarization Nikolai Voshchinnikov Sobolev Astronomical Institute , St. Petersburg University, Russia Preliminaries: Sobolev-Chandrasekhar effect Victor Sobolev (1943/1949) Subramanian Chandrasekhar


  1. Tracing magnetic fields through interstellar polarization Nikolai Voshchinnikov Sobolev Astronomical Institute , St. Petersburg University, Russia

  2. Preliminaries: Sobolev-Chandrasekhar effect Victor Sobolev (1943/1949) Subramanian Chandrasekhar (1946) Electronic (Thomson) scattering in stellar atmosphere Limb polarization: P~12.5% (11.713%) How to observe? Eclipsing binaries! IDMC, Pune, 24.12.2011 2

  3. Interstellar linear polarization: discovery 1949 – William Hiltner, John Hall, Victor Dombrovskii (searching for Sobolev-Chandrasekhar effect) IDMC, Pune, 24.12.2011 3

  4. IDMC, Pune, 24.12.2011 4

  5. Interstellar polarization: observations IDMC, Pune, 24.12.2011 5

  6. IDMC, Pune, 24.12.2011 6

  7. IDMC, Pune, 24.12.2011 7

  8. P max Exti tinction A( A( λ ) λ max Polarizatio ion P( P( λ ) IDMC, Pune, 24.12.2011 8

  9. Polarization: unique phenomenon! 1. Dust grains must be non-spherical 2. Dust grains must have sizes close to the wavelength of incident radiation 3. Dust grains must have specific magnetic properties in order to interact with interstellar magnetic field 4. Dust grains must be aligned 5. The direction of alignment must not coincide with the line of sight 6. The distribution of aligned grains along the line of sight must be rather regular in order to exclude the cancellation of polarization IDMC, Pune, 24.12.2011 9

  10. Interpretation TE TM Problems: li light sca cattering by by non-spherical par articles alig alignment mec echanism av averaging ove ver rot rotation IDMC, Pune, 24.12.2011 10

  11. 1951ApJ...114..206D W =90deg? Paramagnetic rela relaxation in in magnetic field field (F (Fe e in incl clusions) IDMC, Pune, 24.12.2011 11

  12. ! W =90deg? IDMC, Pune, 24.12.2011 12

  13. Alignment • Radiative torques alignment function: ? • Davis-Greenstein type Particles: helical, dielectric alignment function: alignment parameter Calculations, comparison with observations: ? [Whittet et al., 2008] R -Rayleig igh re reductio ion fac facto tor IDMC, Pune, 24.12.2011 13 (Greenberg’68)

  14. Model Rotating spheroidal grains Parameters: Refractive index (chemical composition) Size (size distribution): r V, min , r V,max , q Shape ( a/b – aspect ratio) Degree of alignment: δ 0 Direction of alignment (angle between the line of sight and direction of magnetic field): Ω (0deg. ≤ Ω ≤ 90deg.) IDMC, Pune, 24.12.2011 14

  15. 7 stars 7 stars wi with kno known n ion UV UV pol polariz izatio Sp Sphe hero roids: prola prolate/oblate, , a/b a/b =1.1 .1-10 10 Mat ateri rials: : ast astro rono nomical l si sili licate, , am amorp rphous carbon car Ali lignment: Davi avis-Greenstein imperfect (I (IDG) IDMC, Pune, 24.12.2011 15

  16. ! Parameters: 4 (C (C) ) + 4 (S (Si) i) + 1 (s (shape) + 2 (a (alig lignment) IDMC, Pune, 24.12.2011 16

  17. But UV polarization was measured in a few directions. We can search for relations between parameters of P( P( λ ) curves ( P max , l max , K) ) + R(V (V) (?) and properties of dust grains (size, shape) + degree and direction of alignment. Stars in Taurus molecular cloud (TMC1/Heiles cloud2) IDMC, Pune, 24.12.2011 17

  18. Stars in Taurus molecular cloud (TMC1/Heiles cloud2) IDMC, Pune, 24.12.2011 18

  19. Data fro from Whit itte tet et t al. l. (20 (2001) IDMC, Pune, 24.12.2011 19

  20. (T (TMC1, , Messenger’s Cl Cloud1) IDMC, Pune, 24.12.2011 20

  21. TMC1, cloud1: prolate (Si!) spheroids, a/b=3, r Vmin =0.07 m m, r Vmax =0.35 m m, q=-1.7, d 0 =3 m m, W =15(15)90 IDMC, Pune, 24.12.2011 21

  22. TMC1, cloud1: prolate spheroids, a/b=3, r Vmin =0.07 m m, r Vmax =0.35 m m, q=-1.7, d 0 =3 m m, W =15(15)90 IDMC, Pune, 24.12.2011 22

  23. TMC1, cloud1: prolate spheroids, a/b=3, r Vmin =0.07 m m, r Vmax =0.35 m m, q=-1.7, d 0 =3 m m, W =15(15)90deg. W =60 60-90 90deg. W =4 =45-60deg. W =3 =30-45deg. IDMC, Pune, 24.12.2011 23

  24. TMC1, cloud1: prolate spheroids, a/b=3, r Vmin =0.07 m m, r Vmax =0.35 m m, q=-1.7, d 0 =3 m m, W =15(15)90deg. IDMC, Pune, 24.12.2011 24

  25. Polarizing grains: ? C gra rain ins do do not t pro roduce WHY? pola larization May ay be be Fe e gra rains? (Fe+Mg)/Si>2 ! IDMC, Pune, 24.12.2011 25

  26. Amorphous sili ilicate (oli (olivine ty type) (M (Mg,Fe) 2 SiO 4 (in (include all ll Si Si + Mg g and nd a part rt of of Fe) r co rr .= .=-0.654 corr Fe e grai rains do do not t pro roduce pola larization! IDMC, Pune, 24.12.2011 26

  27. Si i gra rains pro roduce pola larization! IDMC, Pune, 24.12.2011 27

  28. Some conclusions and future work • Accurate modelling of interstellar linear polarization for individual objects allows one to get information about the spatial structure of magnetic fields. • More likely: polarization is produced by Si grains and is not produced by C and Fe-rich grains. • Development of appropriate models (inhomogeneous particles + imperfect alignment) with a reasonable number of parameters is highly appreciated. IDMC, Pune, 24.12.2011 28

  29. • THANKS! • शुक्ऱिया • ВСЁ ! IDMC, Pune, 24.12.2011 29

  30. C,O,Mg,Si,Fe + vacuum (!) COS OSMIC  Sun Sun ppm – parts per million: N(X)/N(H)*10^6 Average values: ppm / X d /X cosmic • Fe Mg Si • all stars 30.64 /97.0%(134) 33.13/83.2%(147) 25.01/77.2%(39) • |b|<30deg, 30.86 (78) 34.11 (85) 29.30 (15) • E(B-V)>0.2 • |b|>30deg 28.68 (9) 29.98 (14) 20.03 (10) E(B (B-V)<0.8 --- --- diff diffuse an and d tran translu lucent IS IS clo clouds IDMC, Pune, 24.12.2011 30

  31. Amorphous sili ilicate (oli (olivine ty type) (M (Mg,Fe) 2 SiO 4 (31 (31 sig ightl tlines with ith Fe + Mg g + Si Si) (Fe+Mg)/Si>2 ! IDMC, Pune, 24.12.2011 31

  32. Pri rincipal ele elements O(~120 stars) C(~18 (!) stars) <[Si/H] d > =25ppm 100ppm: olivine (O=4xSi) ve very un uncertain! IDMC, Pune, 24.12.2011 32

  33. Interpretation (first application of the Mie theory) • 1933 Schalen --- Fe • 1934 Schoenberg & Jung --- Mg • Ambiguity! Sto tokes prin rinciple of f optic tical eq equi uivalence: It is im impossible le to distinguish two beams which are the sum of non-coherent simple waves if they have the same Stokes parameters IDMC, Pune, 24.12.2011 33

  34. IDMC, Pune, 24.12.2011 34

  35. Why? IDMC, Pune, 24.12.2011 35

  36. Cosmic dust grains • Observations • Interpretation (grain characteristics) • composition • Interstellar extinction • size • Interstellar polarization • shape • Scattered radiation (nebulae, • structure circumstellar shells) • (surface properties) • Infrared radiation (dust emission) • Dust features • (Element depletions) IDMC, Pune, 24.12.2011 36

  37. IDMC, Pune, 24.12.2011 37

  38. IDMC, Pune, 24.12.2011 38

  39. Stars in Taurus molecular cloud (TMC1, cloud1) IDMC, Pune, 24.12.2011 39

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend