interpolation polynomial approximation lagrange
play

Interpolation & Polynomial Approximation Lagrange Interpolating - PowerPoint PPT Presentation

Interpolation & Polynomial Approximation Lagrange Interpolating Polynomials II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University 2011 Brooks/Cole,


  1. Interpolation & Polynomial Approximation Lagrange Interpolating Polynomials II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University � 2011 Brooks/Cole, Cengage Learning c

  2. Error Bound Error Example 1 Error Example 2 Outline Interpolating Polynomial Error Bound 1 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 2 / 25

  3. Error Bound Error Example 1 Error Example 2 Outline Interpolating Polynomial Error Bound 1 Example: 2nd Lagrange Interpolating Polynomial Error Bound 2 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 2 / 25

  4. Error Bound Error Example 1 Error Example 2 Outline Interpolating Polynomial Error Bound 1 Example: 2nd Lagrange Interpolating Polynomial Error Bound 2 Example: Interpolating Polynomial Error for Tabulated Data 3 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 2 / 25

  5. Error Bound Error Example 1 Error Example 2 Outline Interpolating Polynomial Error Bound 1 Example: 2nd Lagrange Interpolating Polynomial Error Bound 2 Example: Interpolating Polynomial Error for Tabulated Data 3 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 3 / 25

  6. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Theorem Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 4 / 25

  7. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Theorem Suppose x 0 , x 1 , . . . , x n are distinct numbers in the interval [ a , b ] and f ∈ C n + 1 [ a , b ] . Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 4 / 25

  8. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Theorem Suppose x 0 , x 1 , . . . , x n are distinct numbers in the interval [ a , b ] and f ∈ C n + 1 [ a , b ] . Then, for each x in [ a , b ] , a number ξ ( x ) (generally unknown) between x 0 , x 1 , . . . , x n , and hence in ( a , b ) , exists with f ( x ) = P ( x ) + f ( n + 1 ) ( ξ ( x )) ( x − x 0 )( x − x 1 ) · · · ( x − x n ) ( n + 1 )! Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 4 / 25

  9. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Theorem Suppose x 0 , x 1 , . . . , x n are distinct numbers in the interval [ a , b ] and f ∈ C n + 1 [ a , b ] . Then, for each x in [ a , b ] , a number ξ ( x ) (generally unknown) between x 0 , x 1 , . . . , x n , and hence in ( a , b ) , exists with f ( x ) = P ( x ) + f ( n + 1 ) ( ξ ( x )) ( x − x 0 )( x − x 1 ) · · · ( x − x n ) ( n + 1 )! where P ( x ) is the interpolating polynomial given by n � P ( x ) = f ( x 0 ) L n , 0 ( x ) + · · · + f ( x n ) L n , n ( x ) = f ( x k ) L n , k ( x ) k = 0 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 4 / 25

  10. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (1/6) Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 5 / 25

  11. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (1/6) Note first that if x = x k , for any k = 0 , 1 , . . . , n , then f ( x k ) = P ( x k ) , and choosing ξ ( x k ) arbitrarily in ( a , b ) yields the result: f ( x ) = P ( x ) + f ( n + 1 ) ( ξ ( x )) ( x − x 0 )( x − x 1 ) · · · ( x − x n ) ( n + 1 )! Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 5 / 25

  12. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (1/6) Note first that if x = x k , for any k = 0 , 1 , . . . , n , then f ( x k ) = P ( x k ) , and choosing ξ ( x k ) arbitrarily in ( a , b ) yields the result: f ( x ) = P ( x ) + f ( n + 1 ) ( ξ ( x )) ( x − x 0 )( x − x 1 ) · · · ( x − x n ) ( n + 1 )! If x � = x k , for all k = 0 , 1 , . . . , n , define the function g for t in [ a , b ] by g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( t − x 0 )( t − x 1 ) · · · ( t − x n ) ( x − x 0 )( x − x 1 ) · · · ( x − x n ) n ( t − x i ) � = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 5 / 25

  13. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound n ( t − x i ) � g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Error Bound: Proof (2/6) Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 6 / 25

  14. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound n ( t − x i ) � g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Error Bound: Proof (2/6) Since f ∈ C n + 1 [ a , b ] , and P ∈ C ∞ [ a , b ] , it follows that g ∈ C n + 1 [ a , b ] . For t = x k , we have n ( x k − x i ) � g ( x k ) = f ( x k ) − P ( x k ) − [ f ( x ) − P ( x )] ( x − x i ) = 0 − [ f ( x ) − P ( x )] · 0 = 0 i = 0 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 6 / 25

  15. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound n ( t − x i ) � g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Error Bound: Proof (3/6) Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 7 / 25

  16. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound n ( t − x i ) � g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Error Bound: Proof (3/6) We have seen that g ( x k ) = 0. Furthermore, n ( x − x i ) � g ( x ) = f ( x ) − P ( x ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 = f ( x ) − P ( x ) − [ f ( x ) − P ( x )] = 0 Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 7 / 25

  17. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound n ( t − x i ) � g ( t ) = f ( t ) − P ( t ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 Error Bound: Proof (3/6) We have seen that g ( x k ) = 0. Furthermore, n ( x − x i ) � g ( x ) = f ( x ) − P ( x ) − [ f ( x ) − P ( x )] ( x − x i ) i = 0 = f ( x ) − P ( x ) − [ f ( x ) − P ( x )] = 0 Thus g ∈ C n + 1 [ a , b ] , and g is zero at the n + 2 distinct numbers x , x 0 , x 1 , . . . , x n . Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 7 / 25

  18. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (4/6) Since g ∈ C n + 1 [ a , b ] , and g is zero at the n + 2 distinct numbers Theorem there exists a x , x 0 , x 1 , . . . , x n , by Generalized Rolle’s Theorem number ξ in ( a , b ) for which g ( n + 1 ) ( ξ ) = 0. Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 8 / 25

  19. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (4/6) Since g ∈ C n + 1 [ a , b ] , and g is zero at the n + 2 distinct numbers Theorem there exists a x , x 0 , x 1 , . . . , x n , by Generalized Rolle’s Theorem number ξ in ( a , b ) for which g ( n + 1 ) ( ξ ) = 0. So g ( n + 1 ) ( ξ ) 0 = � n � f ( n + 1 ) ( ξ ) − P ( n + 1 ) ( ξ ) − [ f ( x ) − P ( x )] d n + 1 ( t − x i ) � = dt n + 1 ( x − x i ) i = 0 t = ξ Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 8 / 25

  20. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (4/6) Since g ∈ C n + 1 [ a , b ] , and g is zero at the n + 2 distinct numbers Theorem there exists a x , x 0 , x 1 , . . . , x n , by Generalized Rolle’s Theorem number ξ in ( a , b ) for which g ( n + 1 ) ( ξ ) = 0. So g ( n + 1 ) ( ξ ) 0 = � n � f ( n + 1 ) ( ξ ) − P ( n + 1 ) ( ξ ) − [ f ( x ) − P ( x )] d n + 1 ( t − x i ) � = dt n + 1 ( x − x i ) i = 0 t = ξ However, P ( x ) is a polynomial of degree at most n , so the ( n + 1 ) st derivative, P ( n + 1 ) ( x ) , is identically zero. Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 8 / 25

  21. Error Bound Error Example 1 Error Example 2 The Lagrange Polynomial: Theoretical Error Bound Error Bound: Proof (5/6) Numerical Analysis (Chapter 3) Lagrange Interpolating Polynomials II R L Burden & J D Faires 9 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend