numerical integration
play

Numerical integration Recall that Lagrange interpolation of f by n - PowerPoint PPT Presentation

Numerical integration Recall that Lagrange interpolation of f by n n + f ( n +1) ( ( x )) f ( x ) = f ( x i ) L n , i ( x ) ( x x i ) ( n + 1)! i =0 i =0 Lagrange polynomial P n ( x ) So we can take integral on


  1. Numerical integration Recall that Lagrange interpolation of f by n n + f ( n +1) ( ξ ( x )) � � f ( x ) = f ( x i ) L n , i ( x ) ( x − x i ) ( n + 1)! i =0 i =0 � �� � Lagrange polynomial P n ( x ) So we can take integral on both sides: � b � b � b n n f ( n +1) ( ξ ( x )) � � f ( x ) d x = f ( x i ) L n , i ( x ) d x + ( x − x i ) d x ( n + 1)! a a a i =0 i =0 n � = a i f ( x i ) + E ( f ) i =0 where for i = 0 , . . . , n , � b � b n f ( n +1) ( ξ ( x )) 1 � a i = L n , i ( x ) d x and E ( f ) = ( x − x i ) d x ( n + 1)! ( n + 1)! a a i =0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 150

  2. Trapezoidal rule Suppose we know f at x 0 = a and x 1 = b , then P 1 ( x ) = ( x − x 1 ) ( x 0 − x 1 ) f ( x 0 ) + ( x − x 0 ) ( x 1 − x 0 ) f ( x 1 ) Then taking integral of f yields � ( x − x 1 ) � b � x 1 � ( x 0 − x 1 ) f ( x 0 ) + ( x − x 0 ) f ( x ) d x = ( x 1 − x 0 ) f ( x 1 ) d x a x 0 � x 1 + 1 f ′′ ( ξ ( x )) ( x − x 0 ) ( x − x 1 ) d x 2 x 0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 151

  3. Trapezoidal rule Integral of the first term on the right is straightforward. Note that the second term on the right is � x 1 f ′′ ( ξ ( x )) ( x − x 0 ) ( x − x 1 ) d x x 0 � x 1 = f ′′ ( ξ ) ( x − x 0 ) ( x − x 1 ) d x x 0 � � x 1 x 3 3 − ( x 1 + x 0 ) x 2 + x 0 x 1 x = f ′′ ( ξ ) 2 x 0 = − h 3 6 f ′′ ( ξ ) where ξ ∈ ( x 0 , x 1 ) by MVT for integrals and Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 152

  4. Trapezoidal rule Therefore, we obtain � � x 1 � b 2 ( x 0 − x 1 ) f ( x 0 ) + ( x − x 0 ) 2 ( x − x 1 ) 2 − h 3 12 f ′′ ( ξ ) f ( x ) dx = 2 ( x 1 − x 0 ) f ( x 1 ) a x 0 − h 3 = ( x 1 − x 0 ) � � 12 f ′′ ( ξ ) f ( x 0 ) + f ( x 1 ) 2 Trapezoidal rule: � b − h 3 f ( x ) d x = h � � 12 f ′′ ( ξ ) f ( x 0 ) + f ( x 1 ) 2 a Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 153

  5. Trapezoidal rule Illustration of Trapezoidal rule: y y � f ( x ) y � P 1 ( x ) a � x 0 x x 1 � b Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 154

  6. Simpson’s rule If we have values of f at x 0 = a , x 1 = a + b 2 , and x 2 = b . Then � ( x − x 1 ) ( x − x 2 ) � b � x 2 ( x 0 − x 1 ) ( x 0 − x 2 ) f ( x 0 ) + ( x − x 0 ) ( x − x 2 ) f ( x ) d x = ( x 1 − x 0 ) ( x 1 − x 2 ) f ( x 1 ) a x 0 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) f ( x 2 )] d x � x 2 ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) f (3) ( ξ ( x )) d x + 6 x 0 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 155

  7. Simpson’s rule With similar idea, we can derive the Simpson’s rule : � x 2 − h 5 f ( x ) dx = h � � 90 f (4) ( ξ ) f ( x 0 ) + 4 f ( x 1 ) + f ( x 2 ) 3 x 0 y y � f ( x ) y � P 2 ( x ) x a � x 0 x 1 x 2 � b Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 156

  8. Example Example (Trapezoidal and Simpson’s rules for integration) � 2 Compare Trapezoidal and Simpson’s rules on 0 f ( x ) d x where f is (a) x 2 (b) x 4 (c) ( x + 1) − 1 √ (f) e x 1 + x 2 (d) (e) sin x Solution. Apply the the formulas respectively to get: (a) (b) (c) (d) (e) (f) Problem √ x 2 x 4 ( x + 1) − 1 e x 1 + x 2 f ( x ) sin x Exact value 2.667 6.400 1.099 2.958 1.416 6.389 4.000 16.000 1.333 3.326 0.909 8.389 Trapezoidal 2.667 6.667 1.111 2.964 1.425 6.421 Simpson’s Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 157

  9. Newton-Cotes formula We can follow the same idea to get higher-order approximations, called the Netwon-Cotes formulas. For n = 3 where ξ ∈ ( x 0 , x 3 ): � x 3 − 3 h 5 f ( x ) d x = 3 h � � 80 f (4) ( ξ ) f ( x 0 ) + 3 f ( x 1 ) + 3 f ( x 2 ) + f ( x 3 ) 8 x 0 For n = 4 where ξ ∈ ( x 0 , x 4 ): � x 4 f ( x ) d x =2 h � � 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) 45 x 0 − 8 h 7 945 f (6) ( ξ ) Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 158

  10. Composite numerical integration Problem with Newton-Cotes rule for high degree is oscillations. y y = P n ( x) y = f ( x) x a � x 0 x 1 x 2 x n � 1 x n � b Instead, we can approximate the integral “piecewisely”. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 159

  11. Composite midpoint rule Let x − 1 = a , x 0 , x 1 , . . . , x n , x n +1 = b be a uniform partition of [ a , b ] with h = b − a n +2 . Then we obtain the composite midpoint rule : � b n / 2 + b − a � � � h 2 f ′′ ( µ ) f ( x ) d x = 2 h f x 2 j 6 a j =0 y y � f ( x ) x 2 j x 2 j � 1 b � x n � 1 x a � x � 1 x 0 x 1 x 2 j � 1 x n � 1 x n Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 160

  12. Composite trapezoidal rule Let x 0 = a , x 1 , . . . , x n = b be a uniform partition of [ a , b ] with h = b − a n . Then we obtain the composite Trapezoidal rule :   � b n − 1  − b − a f ( x ) d x = h � � � 12 h 2 f ′′ ( µ )  f ( a ) + 2 + f ( b ) f x j 2 a j =1 y y � f ( x ) x a � x 0 x 1 x j � 1 x j x n � 1 b � x n Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 161

  13. Composite Simpson’s rule Let x 0 , x 1 , . . . , x n ( n even) be a uniform partition of [ a , b ]. Then apply Simpson’s rule on [ x 0 , x 2 ] , [ x 2 , x 4 ] , . . . , a total of n such intervals. Then we obtain the composite Simpson’s rule :   � b ( n / 2) − 1 n / 2 f ( x ) dx = h  − b − a � � 180 h 4 f (4) ( µ )  f ( a ) + 2 f ( x 2 j ) + 4 f ( x 2 j − 1 ) + f ( b ) 3 a j =1 j =1 y y � f ( x ) x a � x 0 x 2 x 2 j � 2 x 2 j � 1 x 2 j b � x n Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 162

  14. Gauss quadrature Previously we chose points (nodes) with fixed gaps. What if we are allowed to to choose points x 0 , . . . , x n and evaluate f there? y y y y � f ( x ) y � f ( x ) y � f ( x ) x x x a � x 1 x 2 � b a � x 1 x 2 � b a � x 1 x 2 � b y y y y � f ( x ) y � f ( x ) y � f ( x ) x x x a x 1 x 2 b a x 1 x 2 b a x 1 x 2 b Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 163

  15. Gauss quadrature Gauss quadrature tries to determine x 1 , . . . , x n and c 1 , . . . , c n s.t. � b n � f ( x ) d x ≈ c i f ( x i ) a i =1 Conceptually, since we have 2 n parameters, i.e., c i , x i for i = 1 , . . . , n , we expect to get “=” if f ( x ) is a polynomial of degree ≤ 2 n − 1. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 164

  16. Gauss quadrature Let’s first try the case with interval [ − 1 , 1] and two points x 1 , x 2 ∈ [ − 1 , 1]. Then we need to find x 1 , x 2 , c 1 , c 2 such that � 1 f ( x ) dx ≈ c 1 f ( x 1 ) + c 2 f ( x 2 ) − 1 and “=” holds for all polynomials of degree ≤ 3. Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 165

  17. Gauss quadrature We first note � � � � � � a 0 + a 1 x + a 2 x 2 + a 3 x 3 � x 2 d x + a 3 x 3 d x d x = a 0 1 d x + a 1 x d x + a 2 � 1 Then we need x 1 , x 2 , c 1 , c 2 s.t. − 1 f ( x ) d x = c 1 f ( x 1 ) + c 2 f ( x 2 ) for f ( x ) = 1 , x , x 2 , and x 3 : � 1 c 1 · 1 + c 2 · 1 = 1 d x = 2 , − 1 � 1 c 1 · x 1 + c 2 · x 2 = x d x = 0 − 1 � 1 x 2 d x = 2 c 1 · x 2 1 + c 2 · x 2 2 = 3 , − 1 � 1 x 3 d x = 0 c 1 · x 3 1 + c 2 · x 3 2 = − 1 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 166

  18. Gauss quadrature Solve the system of four equations to obtain x 1 , x 2 , c 1 , c 2 : √ √ 3 3 c 1 = 1 , c 2 = 1 , x 1 = − and x 2 = 3 , 3 So the approximation is √ � √ � � � � 1 − 3 3 f ( x ) d x ≈ f + f 3 3 − 1 which is exact for all polynomials of degree ≤ 3. This point and weight selection is called Gauss quadrature . Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 167

  19. Legendre polynomials To obtain Gauss quadrature for larger n , we need Legendre polynomials { P n : n = 0 , 1 , . . . } : 1. All P n are monic (leading coefficient =1) 2. � 1 P ( x ) P n ( x ) d x = 0 − 1 for all polynomial P of degree less than n . Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 168

  20. Legendre polynomials The first five Legendre polynomials: P 0 ( x ) = 1 P 1 ( x ) = x P 2 ( x ) = x 2 − 1 3 P 3 ( x ) = x 3 − 3 5 x P 4 ( x ) = x 4 − 6 7 x 2 + 3 35 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 169

  21. Gauss quadrature and Legendre polynomial Theorem (Obtain Gauss quadrature by Legendre poly.) Suppose x 1 , . . . , x n are the roots of the nth Legendre polynomial P n ( x ) , and define � 1 n x − x j � c i = d x x i − x j − 1 j =1 j � = i If P ( x ) is any polynomial of degree less than 2 n, then � 1 n � P ( x ) dx = c i P ( x i ) − 1 i =1 Numerical Analysis I – Xiaojing Ye, Math & Stat, Georgia State University 170

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend