interplay of incipient magnetism and superconductivity in
play

Interplay of incipient magnetism and superconductivity in - PowerPoint PPT Presentation

Interplay of incipient magnetism and superconductivity in heavy-fermion metals F. Steglich MPI for Chemical Physics of Solids, 01187 Dresden, Germany experiments neutron scattering J. Arndt, O. Stockert, M. Loewenhaupt (TUD) Hall effect, MR


  1. Interplay of incipient magnetism and superconductivity in heavy-fermion metals F. Steglich MPI for Chemical Physics of Solids, 01187 Dresden, Germany experiments neutron scattering J. Arndt, O. Stockert, M. Loewenhaupt (TUD) Hall effect, MR S. Friedemann, S. Wirth ac-susc., dc-magn. S. Lausberg, T. Westerkamp, M. Brando single crystals H.S. Jeevan, C. Krellner, C. Geibel theory S. Kirchner, Q. Si (Rice), P. Coleman (Rutgers), G. Zwicknagl (Braunschweig) funding DFG FOR 960 „Quantum Phase Transitions“

  2. Heavy-Fermion Superconductors T c (K) T c (K) CeCu 2 Si 2 0.6 ('79 DA/K) PrOs 4 Sb 12 1.85 ('01 UCSD) [p = 2.9 GPa: 2.3 ('84 GE/GR)] CeNi 2 Ge 2 0.2 ('97 DA, '98 CA/GR) 0.08 ( ' 08 TO/IR) β -YbAlB 4 CeIrIn 5 0.4 ('00 LANL) CeCoIn 5 2.3 ('00 LANL) p > 0 Ce 2 CoIn 8 0.4 ('02 NA) Eu metal 1.8-2.8 (’09 SL, OS) Ce 2 PdIn 8 0.7 ('09 WR) CePt 3 Si 0.7 ('03 VI) UBe 13 0.9 ('83 Z/LANL) p > 0 UPt 3 0.5 ('84 LANL) CeCu 2 Ge 2 0.6 ('92 GE) URu 2 Si 2 1.4 ('84 K/DA) CePd 2 Si 2 0.4 ('94 CA) UNi 2 Al 3 1.2 ('91 DA) CeRh 2 Si 2 0.4 ('95 LANL) UPd 2 Al 3 2.0 ('91 DA) CeCu 2 0.15 ('97 GE/KA) URhGe 0.3 ('01 GR) UCoGe 3.0 ('07 AM/KA) CeIn 3 0.2 ('98 CA) p > 0 CeRhIn 5 2.1 ('00 LANL) UGe 2 0.7 ('00 CA/GR) Ce 2 RhIn 8 1.1 ('03 LANL) UIr 0.14 ('04 OS) CeRhSi 3 0.8 ('05 SE) CeIrSi 3 1.6 ('06 OS) NpPd 5 Al 2 5.0 ('07 OS) CeCoGe 3 0.7 ('06 OS) Ce 2 Ni 3 Ge 5 0.26 ('06 OS) PuCoGa 5 18.5 ('02 LANL) CeNiGe 3 0.4 ('06 OS) PuRhGa5 8.7 ('03 KA) CePd 5 Al 2 0,57 (‘08 OS) CeRhGe 2 0.45 ('09 OS) p > 0 Am metal 2.2 ('05 KA) CePt 2 In 7 2.1 (‘10 LANL) CeIrGe 3 1.5 (’10 OS)

  3. Novel phases near QCPs • High-T c superconductivity in cuprates (G. Bednorz, K.A. Müller '86) 16 URu 2 Si 2 14 12 ρ max 10 T (K) T * 8 6 II 4 III Hidden Fermi Order (I) Liquid (IV) 2 V 0 30 32 34 36 38 40 42 44 µ 0 H (T) • Hidden order and more in URu 2 Si 2 (K.H. Kim et al. '04) • Disorder sensitive phase in Sr 3 Ru 2 O 7 (S. A. Grigera et al. '04)

  4. Non-Fermi-liquid superconductor: CePd 2 Si 2 [N.D. Mathur et al., Nature 394 , 39 (1998)] ↑ CePd 2 Si 2 T • AF QCP at p c = 28 kbar • T c = 0.4 K at p = p c • NFL normal state • SC mediated by strong spinfluctuations ? cf. K. Miyake et al., Phys. Rev. B 34 , 6554 (1986). D.J. Scalapino et al., p → Phys. Rev. B 34 , 8190 (1986).

  5. Spin gap in superconducting CeCu 2 Si 2 [O. Stockert et al., Nature Phys. 7 , 119 (2011)] IN12/ILL k f = 1.15 Å -1 Δ E = 57 μ eV (FWHM) Q = Q AF/nesting : Spin excitation gap below T c c ≈ 3.9 ħω 0 /k B T T c = 600 mK at ħω 0 ≈ 0.2 meV

  6. T-dependence of spin excitations [O. Stockert et al., Nature Phys. 7 , 119 (2011)] BCS: 2 Δ 0 /k B T c = 4.3, Ohkawa ’87 Cu-NQR: = 5.0, Ishida et al. ’99, Fujiwara et al. ’08

  7. Quantum critical spin fluctuations in CeCu 2 Si 2 [J. Arndt et al. (to be published)] 3D-SDW QCP (HMM) scenario: Δρ ~ T 1.5 , γ = γ 0 – bT 0.5 (P. Gegenwart et al. ‘98) Γ (Q AF ) ~ χ (Q AF ) -1 ~ T 3/2 [ χ (Q AF ) Γ (Q AF ) = const. for param. HF metals (Y. Kuramoto ’87) ] χ ‘‘ T 3/2 = f ( ħω /(k B T) 3/2 ) χ (Q AF ) -1 = c 1 + c 2 T α Γ (Q AF ): dto α = 1.57 ± 0.08 α = 1.38 ± 0.16

  8. q-dependence of spin excitations [O. Stockert et al., Nature Phys. 7 , 119 (2011)] paramagnon velocity, v P ω P = v P q ; Q = Q AF ± q v P = (4.44 ± 0.86) meVÅ [(670 ± 130) m/s] * averaged Fermi velocity, v F * ≈ 57 meVÅ [8600 m/s] v F [Rauchschwalbe et al. ′82] * ≈ 8 % (retarded interaction) v P / v F v pn = (6.9 ± 0.2) meVÅ (J. Arndt et al., to be published)

  9. T - B phase diagram of YbRh 2 (Si 1-x Ge x ) 2 [J. Custers et al., Nature 424 , 524 (2003)] Δρ ~ T ε , ε = 2 (blue), ε = 1 (red) x = 0 x = 0.05

  10. Crossed-field Hall-effect results [S. Friedemann et al., PNAS 107 , 14547 (2010)] R H (B 2 ) = lim ρ H (B 1 , B 2 )/B 1 B 1 → 0 ∝ + − 0 R mB R ∝ solid lines: = − + H 2 H ( ) R B R mB H 2 H 2 + p 1 ( B / B ) 2 0

  11. Limiting values of the Hall and MR crossover [S. Friedemann et al., PNAS 107 , 14547 (2010)]

  12. Fermi surface collapse [S. Friedemann et al., PNAS 107 , 14547 (2010)] Crossover position T*(B) Crossover width 0.3 cross- single- magneto- 0.3 FWHM( T ) field field resistivity ~ YbRh 2 Si 2 R H ( B 2 ) R H ( B 1 ) ρ ( B 2 ) sample 1 0.2 sample 2 FWHM (T) 0.2 T LFL T (K) 0.1 0.1 cross- single- magneto- T N field field resistivity ~ 0.0 YbRh 2 Si 2 R H ( B 2 ) R H ( B 1 ) ρ ( B 2 ) 0.0 0.1 0.2 0.3 sample 1 T (K) sample 2 FWHM ~ T ω /T scaling (Q. Si, S. Kirchner) 0.0 0.0 0.1 0.2 0.3 0.4 B 2 (T) 1.0 T → 0 ∞ ) 0 - R H T*(B) agrees with data from ρ , λ , M ∞ )/( R H 0.5 (P. Gegenwart et al., Science 315 , 969 (2007)) ( R H - R H T 0.0 0.0 0.5 1.0 1.5 2.0 2.5 B / B 0

  13. Global phase diagram [S. Friedemann et al., Nature Phys. 5 , 465 (2009)] 6 % Ir : intermediate (spin-liquid, SL ?!) phase: B N = 0.15 < B < B* = 45 mT 7 % Co: Kondo breakdown within AF phase (like in pure YbRh 2 Si 2 under pressure) T = 0 III : 6 % Ir [Q. Si, 2009] I : pure YbRh 2 Si 2 II : 7 % Co y(Ir) > 10 % : Kondo breakdown without magnetism

  14. Interplay between superconductivity and quantum criticality CeCu 2 Si 2 ( p ≈ 0) • 3D SDW QCP („conventional QCP“) • d-wave SC due to SDW fluctuations SDW order in other NFL superconductors, e.g., CePd 2 Si 2 ? YbRh 2 Si 2 • coinciding AF & Kondo-breakdown QCPs („unconventional QCP“) • no SC (T ≥ 10 mK) Why? • fm correlations? • unconventional QCP? cf. CeRhIn 5 under pressure [Shishido et al. (2005); Park et al. (2006)] • T c < 10 mK ? Cooperation with E. Schuberth (WMI, TUM) (ac-susc., dc-magn., spec. heat, T > 1 mK)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend