interference alignment and
play

Interference Alignment and RAMCOORAN Co-Ordinated Multi-Point with - PowerPoint PPT Presentation

Interference Alignment and RAMCOORAN Co-Ordinated Multi-Point with 802.11ac-feedback: Testbed Results Per Zetterberg 1 Astonishing Result RAMCOORAN Cadambe/Jafar, Interference Alignment and Degrees of Freedom of the K-User


  1. Interference Alignment and RAMCOORAN Co-Ordinated Multi-Point with 802.11ac-feedback: Testbed Results Per Zetterberg 1

  2. Astonishing Result RAMCOORAN Cadambe/Jafar, ” Interference Alignment and Degrees of Freedom of the K-User Interference Channel”, K-transmitters and K-receivers, K-links: IEEE Trans, Information Theory K/2 simultaneous interference-free links. 2008. Requires coding over multiple channel realizations. Global channel knowledge required. 2

  3. Channel extension (Cadambe/ Jafar) RAMCOORAN ( ) ( ) ( ) [ ] = ij ij ij  H diag h f , 1 t , , h f , t 1 m m = + m 2 n 1 Channel extended MIMO channel (my + 3 n 1 => 1 . 5 wording) + 2 n 1 3

  4. The ”alignment” RAMCOORAN ( ) = + + + = H H y w x x ... x w x D 1 N D 4

  5. Implementation IA RAMCOORAN Feedback: Wired ethernet 𝒗 1 MS 1 BS 1 𝒘 1 𝒗 2 BS 2 MS 2 𝒘 2 𝒗 3 MS 3 𝒘 3 BS 3 5

  6. Implementation: CoMP RAMCOORAN Feedback: Wired ethernet 𝒗 1 MS 1 BS 1 𝒘 1 𝒗 2 BS 2 MS 2 𝒘 2 𝒗 3 MS 3 𝒘 3 BS 3 6

  7. Beamformer RAMCOORAN 2 * u H v = k k , k k SNIR ∑ ≠ k 2 ~ + σ * 2 u H v k k , n n n k “Approaching the Capacity of   2 ∑   ~ σ = σ Wireless Networks through 2 2 max , 0 . 001 H   N k , n Distributed Interference   n Alignment", by Krishna Gomadam, Viveck R. Cadambe and Syed A. Jafar. 7

  8. Beamformer initialization CoMP RAMCOORAN [ ] = = H H H H H U S V , 1 11 12 , 13 1 1 1 [ ] = = H H H , H H U S V 2 21 22 , 23 2 2 2 [ ] = = H H H , H H U S V 3 31 32 , 33 3 3 3 [ ] ( ) ( ) ( ) ~ V = V :, 1 V :, 1 V :, 1 1 2 3 ( ) ~ ~ ~ − 1 = H W V V V 8

  9. 3MS The testbed RAMCOORAN 10m 3BS P=10dBm NF=10-11dB 10m 9

  10. IEEE 802.11ac feedback IEEE 802.11ac feedback RAMCOORAN Training symbols One per antenna 10

  11. IEEE 802.11ac feedback, contd. RAMCOORAN H = H U S V [ ] ( ) ( )   − m , 1 i n N N N c r ( ) ~ ∏ ∏ r φ φ = ψ j j T   N . 1 , i .  V D 1 e , , e , 1 G I . i i r − × i i 1 l i l i N N   r c = = + i 1 l i 1 Number of phis and psis : NcNr-Nc^2/-Nc/2 π 0 π Range 0, 2 , / 2 Range Quantization bits =7 or 9 Quantization bits 5 or 7 The whole 6x2 matrix is treated by the three MSs. 11

  12. Frequency granularity RAMCOORAN Our implementation: 14MHz 1 38 -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8,-6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19 20 -18, -16, -14, -12, -10, -8, -6, -4, -2, -1, 1, 2, 4, 6,8, 10, 12, 14, 16, 18 2 4 8 -12, -8, -4, -1, 1, 4,8, 12 8 6 -16, -8, -1, 1, 8, 16 4 -16,-1,1,16 16 12

  13. SNR feedback SNR feedback RAMCOORAN 20 -18, -16, -14, -12, -10, -8, -6, -4, -2, -1, 1, 2, 4, 6,8, 10, 12,14, 16, 18"; 14MHz 1 2 10 -16, -12, -8, -4, -1, 1, 4, 8, 12, 16 8 12, -8, -4, -1, 1, 4, 8,12 4 4 -8, -1, 1, 8 8 16 2 -16,16 13

  14. Interpolate between subcarriers RAMCOORAN Reuse V on adjacent subcarriers. Interpolate SNR values Reconstruct H as: H=diag(SNR0,SNR1)*V. 14

  15. Overhead RAMCOORAN • The three short frames ≈ 2*60µs+num_users*60µs • Gaps=2 SIFS + num_users SIFS • Number of feedback bits per V matrix= (NcNr-Nc^2/-Nc) (7+9) • Number of feedback for SNR num_users*8*SNRs*Nr Feedback time in our case≈ 350µs+1065µs/(Ng*R) Ng=4, R=2 => 500µs With update interval : 20ms => Overhead 2.5% Based on: Improved MU-MIMO Performance for Future 802.11 Systems Using Differential Feedback , Ron Porat 15

  16. Our implementation 1. BS1 sends P0,P1 2. BS2 sends P2,P3 RAMCOORAN 3. BS3 sends P4,P5 4. MS1-MS3 sends compressed V matrix to BS1. 5. BS1 un-compresses calculates all beamformes using max SINR on 38subcarriers. 6. Each BS sends beamformed frames. 7. MSs saves all data. 8. Post-processing of received signals. 20ms P P P P P P MCS0-9 MCS0-9 MCS0-9 0 1 2 3 4 5 Training frame Payload frames.. 16

  17. Measurement environment RAMCOORAN C B0 B2 B1 C 17

  18. Results LoS (stationary) RAMCOORAN Measured sum throughput 16 14 Sum througput bits/symbol/subcarrier 12 10 8 6 4 CoMP IA TDMA MIMO 2 full-reuse SIMO full-reuse MIMO 0 1 2 4 8 16 38 Ng 18

  19. Results NLoS (stationary) RAMCOORAN Measured sum throughput 16 14 Sum througput bits/symbol/subcarrier 12 10 8 6 4 CoMP IA 2 TDMA MIMO full-reuse SIMO full-reuse MIMO 0 1 2 4 8 16 38 Ng 19

  20. Why is NLoS better for IA? RAMCOORAN 25 20 15 C/Imin (dB) 10 5 LoS 0 NLoS -5 -10 -10 -5 0 5 10 15 20 C/Imax (dB) 20

  21. Time varying channels RAMCOORAN 21

  22. Time varying channels RAMCOORAN 6 People Minute Minute walking after before 5 Throughput 4 3 2 1 0 0 5 10 15 Frame number 22

  23. Simulated on Time varying channels measured RAMCOORAN channels 6 5 Throughput 4 3 2 1 0 0 5 10 15 Frame number 23

  24. 0.5ms feedback Time varying channels delay RAMCOORAN 6 5 4 Throughput 3 2 1 0 0 5 10 15 Frame number 24

  25. Conclusion RAMCOORAN • IA gives 25% sum throughput gain over SU MIMO on stationary channel (LoS and NLoS averaged) • CoMP gives 71% gain over SU MIMO. • All schemes limited by RF impairments. • Geometry factor imortant for IA versus MIMO. • Full reuse SIMO and MIMO worse than SU MIMO. • Next step: analyzing measurements with time varying channels. 25

  26. Results versus EVM model RAMCOORAN Schem e Actual I m pairm ent perform ance m odel IA 11.1 11.7 CoMP 15.2 17.3 SU MIMO 8.9 8.1 FR SIMO 6.5 6.2 FR SIMO 2.3 2.3 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend