interacting particle systems for the analysis of rare
play

Interacting particle systems for the analysis of rare events - PowerPoint PPT Presentation

Interacting particle systems for the analysis of rare events Josselin Garnier (Universit e Paris Diderot) http://www.proba.jussieu.fr/~garnier Cf http://www.proba.jussieu.fr/garnier/expo2.pdf Problem: estimation of the probability of


  1. Interacting particle systems for the analysis of rare events Josselin Garnier (Universit´ e Paris Diderot) http://www.proba.jussieu.fr/~garnier Cf http://www.proba.jussieu.fr/˜garnier/expo2.pdf Problem: estimation of the probability of occurence of a rare event. Simulation by an Interacting Particle System. Two versions: - a rare event in terms of the final state of a Markov chain, - a rare event in terms of a random variable, whose distribution is seen as the stationary distribution of a Markov chain. CEMRACS 2013 Rare events

  2. Rare events • Description of the system: Let E be a measurable space. − ( X p ) 0 ≤ p ≤ M : a E -valued Markov chain: P ( X p ∈ A | X p − 1 = x p − 1 , . . . , X 0 = x 0 ) = P ( X p ∈ A | X p − 1 = x p − 1 ) − V : E → R : the risk function. − a ∈ R : the threshold level. • Problem: estimation of the probability P = P ( V ( X M ) ≥ a ) when a is large = ⇒ P ≪ 1. We know how to simulate the Markov chain ( X p ) 0 ≤ p ≤ M . CEMRACS 2013 Rare events

  3. Rare events • Description of the system: Let E be a measurable space. − ( X p ) 0 ≤ p ≤ M : a E -valued Markov chain: P ( X p ∈ A | X p − 1 = x p − 1 , . . . , X 0 = x 0 ) = P ( X p ∈ A | X p − 1 = x p − 1 ) − V : E → R : the risk function. − a ∈ R : the threshold level. • Problem: estimation of the probability P = P ( V ( X M ) ≥ a ) ⇒ P ≪ 1. when a is large = We know how to simulate the Markov chain ( X p ) 0 ≤ p ≤ M . • Example: X p = X p − 1 + θ p , X 0 = 0, where θ p is a sequence of independent Gaussian random variables with mean zero and variance one. Here − E = R , − V ( x ) = x , − solution known: X M = V ( X M ) ∼ N (0 , M ). CEMRACS 2013 Rare events

  4. Example: Optical communication in transoceanic optical fibers Optical fiber transmission principle: - a binary message is encoded as a train of short light pulses. - the pulse train propagates in a long optical fiber. - the message is read at the output of the fiber. 1 1 0 1 1 1 0 1 Transmission − → t t Input pulse train Output pulse train Transmission is perturbed by different random phenomena (amplifier noise, random dispersion, random birefringence, . . . ). Question: estimation of the bit-error-rate (probability of error), typically 10 − 6 or 10 − 8 . Answer: use of a big numerical code (but brute-force Monte Carlo too expensive). CEMRACS 2013 Rare events

  5. Example: Optical communication in transoceanic optical fibers • Physical model: ( u 0 ( t )) t ∈ R = initial pulse profile. ( u ( z, t )) t ∈ R = pulse profile after a propagation distance z . ( u ( Z, t )) t ∈ R = output pulse profile (after a propagation distance Z ). Propagation from z = 0 to z = Z governed by two coupled nonlinear Schr¨ odinger equations with randomly z -varying coefficients (code OCEAN, Alcatel). ֒ → black box. → Truncation of [0 , Z ] into M segments [ z p − 1 , z p ), z p = pZ/M , 1 ≤ p ≤ M . → X p = u ( z p , t ) t ∈ R is the pulse profile at distance z p . Here ( X p ) 0 ≤ p ≤ M is Markov with state space E = H 2 0 ( R ) ∩ L 2 2 ( R ). CEMRACS 2013 Rare events

  6. Example: Optical communication in transoceanic optical fibers Question: estimation of the probability of anomalous pulse spreading. Rms pulse width after propagation distance z : � � τ ( z ) 2 = | u ( z, t ) | 2 t 2 dt/ | u ( z, t ) | 2 dt � � E → R � The potential function is V : � � � t 2 | X ( t ) | 2 dt/ | X ( t ) | 2 dt � V ( X ) = Problem: estimation of the probability P = P ( τ ( Z ) ≥ a ) = P ( V ( X M ) ≥ a ) CEMRACS 2013 Rare events

  7. Monte Carlo method • n independent copies (( X i 0 , . . . , X i M )) 1 ≤ i ≤ n of ( X 0 , . . . , X M ) distributed with the original P . • Proposed estimator: n � P n = 1 ˆ 1 V ( X i M ) ≥ a n i =1 Unbiased estimator: � � ˆ = P ( V ( X M ) ≥ a ) = P P n E Variance: � P n − P ) 2 � = 1 P P ≪ 1 ( ˆ nP (1 − P ) ≃ E n √ P/ √ n . The absolute error Std( ˆ P n ) ≃ The relative error Std( ˆ P n ) 1 ≃ √ P Pn → We should have n > P − 1 to get a relative error smaller than one. ֒ Of course: P − 1 is the minimum size of the sample required for one element to reach the rare level ! CEMRACS 2013 Rare events

  8. Importance Sampling method • n independent copies (( X i 0 , . . . , X i M )) 1 ≤ i ≤ n of ( X 0 , . . . , X M ) distributed with a biased distribution Q . • Proposed estimator: n � P n = 1 d P ˆ d Q ( X i 0 , . . . , X i M ) 1 V ( X i M ) ≥ a n i =1 Unbiased estimator: � � � � d P ˆ P n = E Q d Q ( X 0 , . . . , X M ) = P E Q 1 V ( X M ) ≥ a Variance: � � � � � P n − P ) 2 � = 1 d P ( ˆ − P 2 d Q ( X 0 , . . . , X M ) E Q E P 1 V ( X M ) ≥ a n → With a proper choice of Q , the error-variance can be dramatically reduced. ֒ 1 V ( X M ) ≥ a Optimal choice: d Q = P ( V ( X M ) ≥ a ) d P . Impossible to apply ! But this result gives ideas (adaptive strategy, ...) • Critical points: choice of the biased distribution + evaluation of the likelihood ratio + simulation of the biased dynamics (intrusive method). CEMRACS 2013 Rare events

  9. Importance Sampling method driven by Large Deviations Principle • Consider the family of twisted distributions, λ > 0: 1 d P ( λ ) = E P ( e λV ( X M ) ) e λV ( X M ) d P P ( λ ) favors random evolutions with high potential values V ( X M ). • n independent copies ( X i M ) 1 ≤ i ≤ n distributed with P ( λ ) . • Estimator: n � P n,λ = 1 d P ˆ d P ( λ ) ( X i 0 , . . . , X i M ) 1 V ( X i M ) ≥ a n i =1 Variance: � P n,λ − P ) 2 � � 1 V ( X M ) ≥ a e − λV ( X M ) � ( ˆ E P [ e λV ( X M ) ] − P 2 n E P ( λ ) = E P e − [ λa − Λ M ( λ )] P − P 2 ≤ where Λ M ( λ ) = log E P [ e λV ( X M ) ]. For a judicious choice of λ , λ ∗ a − Λ M ( λ ∗ ) = sup λ> 0 [ λa − Λ M ( λ )] ≃ − ln P (large deviations principle), so P n,λ − P ) 2 ] � P 2 E P ( λ ) [( ˆ n √ Almost optimal: the relative error is 1 / √ n (compare with MC: 1 / Pn ). CEMRACS 2013 Rare events

  10. Twisted Feynman-Kac path measures Question: How to simulate the twisted distribution P ( λ ) ? Answer: We will show a way to simulate the distribution Q : � M � � 1 d Q = G p ( X 0 , . . . , X p ) d P Z M p =1 where ( G p ) 1 ≤ p ≤ M is a sequence of positive potential functions on the path spaces E p , and Z M = E P [ � G p ( X 0 , . . . , X p )] > 0 is a normalization constant. Examples: G M ( X 0 , . . . , X M ) = e λV ( X M ) . - G p ( X 0 , . . . , X p ) = 1, p < M , - G p ( X 0 , . . . , X p ) = e λ ( V ( X p ) − V ( X p − 1 )) . • What is a “good” choice for G p ? • How to simulate Q directly from P ? CEMRACS 2013 Rare events

  11. Original measures • ( X p ) 0 ≤ p ≤ M : a E -valued Markov chain, starting from X 0 = x 0 , with transition K p ( x p − 1 , d x p ): � P ( X p ∈ A | X p − 1 = x p − 1 , . . . , X 0 = x 0 ) = P ( X p ∈ A | X p − 1 = x p − 1 ) = K p ( x p − 1 , d x p ) A where K p ( x p − 1 , · ) is a probability measure on ( E, E ) for any x p − 1 ∈ E . • Denote the (partial) path Y p = def . ( X 0 , . . . , X p ) ∈ E p +1 , p = 0 , . . . , M The measure µ p on E p +1 is the distribution of Y p : � � � f p ∈ L ∞ ( E p +1 ) µ p ( f p ) = def . E p +1 f p ( y p ) µ p ( d y p ) = E f p ( Y p ) , • Expression of P in terms of µ M : P = µ M ( f ) f ( y M ) = f ( x 0 , . . . , x M ) = 1 V ( x M ) ≥ a → If one can compute/estimate µ M , then one can compute/estimate P . CEMRACS 2013 Rare events

  12. • Recursive relation: � µ p = Θ p ( µ p − 1 ) = def . E p µ p − 1 ( d y p − 1 ) K p ( y p − 1 , · ) with µ 0 = δ x 0 . K p ( y p − 1 , d y ′ p ): Markov transitions associated to the chain Y p : K p ( y p − 1 , d y ′ p ) = δ y p − 1 ( d y ′ p, 0 , . . . , d y ′ p,p − 1 ) K p ( y p − 1 ,p − 1 , d y ′ p,p ) Here y p − 1 = ( y p − 1 , 0 , . . . y p − 1 ,p − 1 ) ∈ E p , y ′ p = ( y ′ p, 0 , . . . y ′ p,p ) ∈ E p +1 ): ֒ → Linear evolution. Proof: µ p ( f p ) = E [ f p ( Y p − 1 , X p )] � � � = E p µ p − 1 ( d y p − 1 ) E f p ( y p − 1 , X p ) | Y p − 1 = y p − 1 � � = E p µ p − 1 ( d y p − 1 ) K p ( y p − 1 ,p − 1 , d x p ) f p ( y p − 1 , x p ) E � � E p +1 d y ′ p K p ( y p − 1 , d y ′ p ) f p ( y ′ = E p µ p − 1 ( d y p − 1 ) p ) = Θ p ( µ p − 1 )( f p ) CEMRACS 2013 Rare events

  13. Unnormalized measures Y p = def . ( X 0 , . . . , X p ) ∈ E p +1 , p = 0 , . . . , M FK measure γ p associated to the pair potentials/transitions ( G p , K p ): � � � γ p ( f p ) = E f p ( Y p ) G k ( Y k ) 1 ≤ k<p • Expression of P in terms of γ M : P = γ M ( g ) � G − 1 g ( y M ) = g ( x 0 , . . . , x M ) = 1 V ( x M ) ≥ a p ( x 0 , . . . , x p ) 1 ≤ p<M → If one can compute/estimate γ M , then one can compute/estimate P . • Recursive relation: � γ p = Ψ p ( γ p − 1 ) = def . E p γ p − 1 ( d y p − 1 ) G p − 1 ( y p − 1 ) K p ( y p − 1 , · ) K p ( y p − 1 , d y ′ p ): Markov transitions associated to the chain Y p K p ( y p − 1 , d y ′ p ) = δ y p − 1 ( d y ′ p, 0 , . . . , d y ′ p,p − 1 ) K p ( y p − 1 ,p − 1 , d y ′ p,p ) ֒ → Linear evolution. CEMRACS 2013 Rare events

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend