integral equations in quantum mechanics i
play

Integral Equations in Quantum Mechanics I I Bound States, II - PowerPoint PPT Presentation

Integral Equations in Quantum Mechanics I I Bound States, II Scattering* Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Pez, & Bordeianu with Support from the National Science


  1. Integral Equations in Quantum Mechanics I I Bound States, II Scattering* Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Foundation Course: Computational Physics II 1 / 1

  2. Problem: Bound States in Momentum Space Integro-Differential Equation r r’ r’ N–body interaction reduces to nonlocal V eff ( r ) : d 2 ψ ( r ) − 1 � dr ′ V ( r , r ′ ) ψ ( r ′ ) = E ψ ( r ) + (1) 2 m dr 2 Integro-differential equation Problem: Solve for l = 0 bound-state E i & ψ i 2 / 1

  3. Theory: Momentum-Space Schrödinger Equation Integral Schrödinger Equation Equally Valid Transform Schrödinger Equation to momentum space Replace integro-differential by integral equation: � ∞ k 2 2 µψ ( k ) + 2 dpp 2 V ( k , p ) ψ ( p ) = E ψ ( k ) (1) π 0 V ( k , p ) = p-space representation (TF) of V : � ∞ V ( k , p ) = 1 dr dr ′ sin ( kr ) V ( r , r ′ ) sin ( pr ′ ) (2) kp 0 ψ ( k ) = p-space representation (TF) of ψ : � ∞ ψ ( k ) = dr kr ψ ( r ) sin ( kr ) (3) 0 Will transform into matrix equation (see matrix Chapter) 3 / 1

  4. Algorithm: Integral Equations → Linear Equations Solve on p-Space Grid k k k k 1 2 3 N Integral ≃ weighted sum (see Integration chapter) � ∞ N dpp 2 V ( k , p ) ψ ( p ) ≃ � w j k 2 j V ( k , k j ) ψ ( k j ) (1) 0 j = 1 Integral equation → algebraic equation N k 2 2 µψ ( k ) + 2 � w j k 2 j V ( k , k j ) ψ ( k j ) = E (2) π j = 1 N unknowns ψ ( k j ) Solve on grid, k = k i 1 unknown E → N couple equations Unknown function ψ ( k ) ( N + 1 ) unknowns: 4 / 1

  5. Algorithm: Integral Equations → Linear Equations Solve on p-Space Grid k k k k 1 2 3 N N k 2 2 µψ ( k i ) + 2 � i w j k 2 j V ( k i , k j ) ψ ( k j ) = E ψ ( k i ) , i = 1 , N (1) π j = 1 e.g. N = 2 ⇒ 2 coupled linear equations k 2 2 µψ ( k 1 ) + 2 1 π w 1 k 2 1 V ( k 1 , k 1 ) ψ ( k 1 ) + w 2 k 2 2 V ( k 1 , k 2 ) ψ ( k 2 ) = E ψ ( k 1 ) (2) k 2 2 µψ ( k 2 ) + 2 2 π w 1 k 2 1 V ( k 2 , k 1 ) ψ ( k 1 ) + w 2 k 2 2 V ( k 2 , k 2 ) ψ ( k 2 ) = E ψ ( k 2 ) (3) 5 / 1

  6. Algorithm: Integral Equations → Linear Equations k k k k Solve on p-Space Grid 1 3 2 N N k 2 2 µψ ( k i ) + 2 � i w j k 2 j V ( k i , k j ) ψ ( k j ) = E ψ ( k i ) , i = 1 , N (1) π j = 1 Matrix Schrödinger equation [ H ][ ψ ] = E [ ψ ] ψ ( k ) = N × 1 vector ψ ( k 1 )   k 2   ψ ( k 2 ) 2 µ + 2 1 π V ( k 1 , k 1 ) k 2 π V ( k 1 , k 2 ) k 2 2 π V ( k 1 , k N ) k 2 2   1 w 1 2 w 2 N w N · · ·         ×    ...     k 2    2 µ + 2 N π V ( k N , k N ) k 2   N w N · · · · · · · · ·   ψ ( k N ) ψ ( k 1 )    ψ ( k 2 )      = E (2)   ...         ψ ( k N ) 6 / 1

  7. Eigenvalue Problem Search for Solution; N equations for ( N + 1 ) unknowns? Solution only sometimes, certain E (eigenvalues) Try to solve, multiply both sides by [ H − EI ] inverse: [ H ][ ψ ] = E [ ψ ] (1) [ H − EI ][ ψ ] = [ 0 ] (2) ⇒ [ ψ ] = [ H − EI ] − 1 [ 0 ] (3) ⇒ if inverse ∃ , then only trivial solution ψ ≡ 0 For nontrivial solution inverse can’t ∃ det [ H − EI ] = 0 (bound-state condition) (4) Requisite additional equation for N + 1 unknowns Solve for just eigenvalues, or full e.v. problem 7 / 1

  8. Model: Delta-Shell Potential (Sort of Analytic Solution) 2 Particles Interact When b Apart V ( r ) = λ 2 µδ ( r − b ) (1) � ∞ 1 sin ( k ′ r ′ ) λ V ( k ′ , k ) = 2 µδ ( r − b ) sin ( kr ) dr (2) k ′ k 0 sin ( k ′ b ) sin ( kb ) = λ (too slow decay) (3) 2 µ k ′ k 1 Bound state E = − κ 2 / 2 µ , if e − 2 κ b − 1 = 2 κ (4) λ Only if strong & attractive ( λ < 0) Exercise: Solve transcendental equation ( b = 10, λ =? ) 8 / 1

  9. Bound–State Integral–Equation Code Sample Code Surveys all Parameters Gauss quadrature for pts & wts Two possible libe calls 1. Search on E , det [ H − EI ] = 0 2. Use eigenproblem solver* Both iterative solutions 9 / 1

  10. Your Implementation Modify or Write Eigenvalues, Eigenproblem 2 µ = 1, b = 10, N > 16 1 Set up [ V ( i , j )] and [ H ( i , j ]) for N ≥ 16 2 Observe monotonic relation E ( λ ) 3 True bound state stable with N , others = artifacts 4 Extract best value for E & estimate precision 5 Comparing RHS, LHS [ H ][ ψ ] = E [ ψ ] 6 10 / 1

  11. Exploration: Momentum Space Wave Function* Bound in p Space? Determine ψ ( k ) (analytic ψ ( p ) ∝ [ p 2 − 2 mE ] − 1 ) 1 Is this reasonable, normalizable? 2 Determine ψ ( r ) via transform 3 � ∞ dk ψ ( k ) sin ( kr ) k 2 ψ ( r ) = (1) kr 0 Is this reasonable ψ ( r ) ? 4 Compare to analytic ψ ( r ) , 5  e − κ r − e κ r , for r < b ,  ψ 0 ( r ) ∝ (2) e − κ r , for r > b  11 / 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend