instantons and curve counting
play

INSTANTONS AND CURVE COUNTING Richard Szabo HeriotWatt University, - PowerPoint PPT Presentation

INSTANTONS AND CURVE COUNTING Richard Szabo HeriotWatt University, Edinburgh Maxwell Institute for Mathematical Sciences Noncommutative Algebraic Geometry and D-Branes Simons Center for Geometry and Physics Stonybrook 2011 Outline I.


  1. INSTANTONS AND CURVE COUNTING Richard Szabo Heriot–Watt University, Edinburgh Maxwell Institute for Mathematical Sciences Noncommutative Algebraic Geometry and D-Branes Simons Center for Geometry and Physics Stonybrook 2011

  2. Outline I. Generalized instantons and curve counting on toric Calabi–Yau 3-folds II. Instantons and curve counting on toric surfaces III. Instanton counting on noncommutative toric varieties with Michele Cirafici, Lucio Cirio, Amir Kashani-Poor, Giovanni Landi & Annamaria Sinkovics

  3. Part I Generalized instantons and curve counting on toric Calabi–Yau 3-folds

  4. Curve counting on toric Calabi–Yau 3-folds X ◮ I k ( X , β ) = Hilbert scheme of curves Y ⊂ X with no component of codim 1, k = χ ( O Y ), β = [ Y ] ∈ H 2 ( X ); parametrizes rank 1 torsion free sheaves T with det T trivial ◮ Donaldson–Thomas partition function: � � � Q β DT β ( X ; q ) , q k Z DT ( X ) = DT β ( X ; q ) = [ I k ( X ,β )] vir 1 k ∈ Z β ∈ H 2 ( X ) ∞ � 1 ◮ DT 0 ( X ; q ) = M ( q ) χ ( X ) = � 1 − q n � n χ ( X ) n =1 M ( q ) enumerates plane partitions π (3D Young diagrams)

  5. Topological vertex formalism ◮ Trivalent planar toric graph Γ with: (1) 3 D Young diagram π v at each vertex v (2) 2 D Young diagram λ e at each edge e (asymptotics of π v ) ◮ “Topological string” partition function (Aganagic et al. ’05; Okounkov, Reshetikhin & Vafa ’06; Maulik et al. ’06) : � � � Q | λ e | Z DT ( X ) = M λ e 1 ,λ e 2 ,λ e 3 ( q ) e edges e vertices Young diagrams λ e v =( e 1 , e 2 , e 3 ) � q | π | ◮ M λ,µ,ν ( q ) = π : ∂π =( λ,µ,ν ) Generating function for plane partitions π with boundaries λ, µ, ν ◮ GW/DT correspondence ≡ gauge/string theory duality

  6. 6D cohomological gauge theory (Iqbal et al. ’06) ◮ N = 2 topologically twisted U (1) Yang–Mills on K¨ ahler 3-fold ( X , ω ) localizes at BRST fixed points: F 2 , 0 = 0 = F 0 , 2 F 1 , 1 , ∧ ω ∧ ω = 0 A A A ◮ Donaldson–Uhlenbeck–Yau equations: BPS D6–D2–D0 states ≡ (generalized) instantons ◮ Localization of path integral onto instanton moduli space M � computes “ Z X = M e ( N ) ” e ( N ) = Euler characteristic class of obstruction bundle N ◮ Stability in D ( X )? B -field/noncommutative deformation, non-linear/higher-derivative corrections, worldsheet instantons, . . .

  7. Singular instanton solutions ◮ Instanton equations on noncommutative deformation C 3 θ have � Z i , Z j � � � Z i , Z † “ADHM form” = 0, = 3 on Fock module i � z 3 � z 1 , ¯ z 2 , ¯ H = C ¯ | 0 � ◮ Solutions parametrized by monomial ideals I ⊂ C [ z 1 , z 2 , z 3 ], z 1 , ¯ z 2 , ¯ z 3 ) | 0 � ; correspond to plane partitions π with H I = I (¯ k := ch 3 ( E ) = | π | ◮ In “Coulomb branch” U (1) r noncommutative instantons correspond to coloured partitions � π = ( π 1 , . . . , π r ); after toric localization: � � C 3 � � � r π | = M π | q | � ( − 1) r +1 q Z r ( − 1) ( r +1) | � = gauge � π Degenerate central charge limit of higher-rank invariants (Stoppa ’09) ; not dual to topological string theory

  8. Stacky gauge theories ◮ G -equivariant instantons on C 3 for finite G ⊂ ( C × ) 3 ⊂ SL (3 , C ) with weights ρ i , natural rep Q = C 3 ; count G -equivariant closed � � subschemes of C 3 (substacks of C 3 / G ) ◮ Instanton equations Z ( ρ + ρ j ) Z ( ρ ) = Z ( ρ + ρ i ) Z ( ρ ) on i j j i H = � G H ρ , Z i = � G Z ( ρ ) , Z ( ρ ) ∈ Hom C ( H ρ , H ρ + ρ i ); ρ ∈ b ρ ∈ b i i solutions parametrized by � G -coloured plane partitions π = ( π ρ ) ρ ∈ b G ◮ Framed moduli space of torsion free sheaves E on P 3 / G , ch 0 ( E ) = r , ch 3 ( E ) = k ≡ reps ( V = C k , W = C r ; B , I ), B ∈ Hom G ( V , Q ⊗ V ), I ∈ Hom G ( W , V ) of framed McKay quiver ◮ McKay correspondence: ch ( E ) determined by exceptional curves on crepant resolution X = Hilb G ( C 3 ) via Beilinson’s theorem

  9. � � Instanton quantum mechanics ◮ Topological matrix model with stability condition and “orbifold ADHM equations” B ( ρ + ρ j ) B ( ρ ) = B ( ρ + ρ i ) B ( ρ ) i j j i ◮ In “Coulomb branch” BRST fixed points correspond to π = ( π 1 , . . . , π r ) with | � π | = k and coloured plane partitions � G , � l | π l ,ρ | = dim C ( V ρ ) π l = ( π l ,ρ ) ρ ∈ b ◮ Local model for instanton moduli space near fixed point of T = ( C × ) 3 × ( C × ) r : � Hom G ( V � π ⊗ Q ) π , V � π ⊗ V 2 Q ) ⊕ Hom G ( V � π , V � Hom G ( W � π ) Hom G ( V � π , V � π ) π , V � ⊕ π ⊗ V 3 Q ) ⊕ Hom G ( V � π , W � π ⊗ V 3 Q ) Hom G ( V � π , V � G -equivariant version of instanton deformation complex

  10. Orbifold invariants ◮ Partition function: � � � π ; r ) q ch 3 ( E � π ) Q ch 2 ( E � Z r [ C 3 / G ] ( − 1) K ( � π ) = gauge � π r = (dim C ( W 1 ) , . . . , dim C ( W r )) Expressed in terms of intersection theory on X = Hilb G ( C 3 ) � ◮ Simple change of variables ( q , Q ) �− → ( p ρ ) ρ ∈ b G with p ρ = q : ρ ∈ b G � π ; r ) � P N � � l =1 | π l ,ρ | Z r [ C 3 / G ] ( − 1) K ( � = p ρ gauge � π ρ ∈ b G G -equivariant instanton charges are relevant variables in noncommutative crepant resolution chamber (Bryan & Young ’10; Joyce & Song ’11)

  11. Part II Instantons and curve counting on toric surfaces

  12. Curve counting on toric surfaces X ◮ Hilbert scheme of curves Y ⊂ X , β = [ Y ] ∈ H 2 ( X ), k = χ ( O Y ): I k ( X , β ) ∼ = I k β ( X , β ) × X [ k − k β ] k β = − 1 2 β · ( β + K X ) (divisorial part) � X [ m ] � dim C = 2 m (punctual part) ◮ Partition function: � � � � � q k Q β Z curve ( X ) = e TI k ( X , β ) I k ( X ,β ) k ∈ Z β ∈ H 2 ( X ) ◮ G¨ ottsche’s formula: ∞ � � � X [ n ] � 1 q n χ η ( q ) − χ ( X ) = = ˆ � 1 − q n � χ ( X ) n =1 n ≥ 0 η ( q ) − 1 enumerates Young diagrams λ = ( λ 1 , λ 2 , . . . ) ˆ

  13. Curve counting — Torus fixed points ◮ Localization theorem in equivariant Chow theory (Edidin & Graham ’98) : {∞ Young diagrams } ∼ = Z 2 ≥ 0 × { finite Young diagrams } ◮ ◮ For compact toric invariant divisor D = � i λ i D i , λ i ∈ Z ≥ 0 with a i = − D 2 i : � � � λ i ( λ i − 1) χ ( O D ) = − 1 2 D · ( D + K X ) = + λ i − λ i λ i +1 a i 2 i

  14. Vertex formalism for toric surfaces ◮ Partition function on bivalent planar toric graph Γ: � � � Z curve ( X ) = G λ e ( q , Q e ) V λ e 1 ,λ e 2 ( q ) λ e ∈ Z ≥ 0 edges e vertices v =( e 1 , e 2 ) η ( q ) − 1 q − λ e 1 λ e 2 λ e ( λ e − 1) + λ e Q λ e G λ e ( q , Q e ) = q a e V λ e 1 ,λ e 2 ( q ) = ˆ , 2 e ◮ Question: Is there a 4D “topological string theory” that reproduces this counting?

  15. Vafa–Witten theory (Vafa & Witten ’94) ◮ N = 4 topologically twisted U (1) Yang–Mills on K¨ ahler surface X , with instanton and monopole charges k = ch 2 ( E ) ∈ H 4 ( X , Z ) , u = c 1 ( E ) ∈ H 2 ( X , Z ) ◮ Path integral computes Euler character of moduli space of U (1) instantons on X (anti-self-dual connections ⋆ F A = − F A ) ◮ Conjectural exact expression on Hirzebruch–Jung spaces (Fucito, Morales & Poghossian ’06; Griguolo et al. ’07) ◮ Conjectured factorization for rank r > 1: � � r Z r gauge ( X ) = Z gauge ( X )

  16. Instanton moduli spaces M X ( β, n ) ◮ Moduli space of rank 1 torsion free sheaves T (“noncommutative instantons”), k = ch 2 ( T ), β = ch 1 ( T ) ∈ H 2 ( X ): M X ( β, k ) ∼ = Pic β ( X ) × X [ k − k β ] � � 1 O X ( D ) ⊗ I Z = 2 D · D − χ ( O Z ) ch 2 ◮ Partition function: � � � � � q − k Q β Z gauge ( X ) = T M X ( β, k ) e M X ( β, k ) k ∈ Q β ∈ H 2 ( X ) ◮ Using linear equivalence, complete set of non-compact torically invariant divisors to integral generating set for Picard group (Kronheimer & Nakajima ’90) : � � C − 1 � ij D j , e i = C ij = D i · D j j

  17. Example — ALE spaces ◮ Resolution of A n singularity C 2 / Z n +1 : ∞ � 1 q λ 2 Q λ ◮ Curve counting: Z curve ( A 1 ) = η ( q ) 2 ˆ λ =0 ∞ � 1 4 u 2 Q u q − 1 ◮ Gauge theory: Z gauge ( A 1 ) = η ( q ) 2 ˆ u = −∞ ◮ Problems related but not identical in 4D!

  18. Part III Instanton counting on noncommutative toric varieties

  19. Cocycle twist quantization (Majid ’95) ◮ H commutative Hopf algebra F : H ⊗ H − → C convolution-invertible unital two-cocycle on H ◮ H F – new Hopf algebra, H = H F as coalgebra, but with: h × F g := F ( h (1) , g (1) ) ( h (2) g (2) ) F − 1 ( h (3) , g (3) ) ◮ Simultaneously deforms all H -covariant constructions as functorial isomorphism of categories of left comodules: H F M Q F : H M − → Notation: ∆ L : A − → H ⊗ A left coaction of H on A , ∆ L ( a ) := a ( − 1) ⊗ a (0)

  20. Comodule twisting of algebras ◮ Trivial “flip” braiding on monoidal category H M : Ψ : A ⊗ B − → B ⊗ A , Ψ( a ⊗ b ) = b ⊗ a ◮ Twist into new braiding on H F M : Ψ F ( a ⊗ b ) = F − 2 � b ( − 1) , a ( − 1) � � b (0) ⊗ a (0) � Ψ F : A F ⊗ B F − → B F ⊗ A F , ◮ A — H -comodule algebra = ⇒ A F = Q F ( A ) — H F -comodule algebra with new product: � a ( − 1) , b ( − 1) � � a (0) b (0) � a · b := F

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend