initial value problems for odes euler s method ii error
play

Initial-Value Problems for ODEs Eulers Method II: Error Bounds - PowerPoint PPT Presentation

Initial-Value Problems for ODEs Eulers Method II: Error Bounds Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University 2011 Brooks/Cole, Cengage Learning


  1. Initial-Value Problems for ODEs Euler’s Method II: Error Bounds Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University � 2011 Brooks/Cole, Cengage Learning c

  2. Computational Lemmas Error Bound Example Outline Computational Lemmas 1 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 2 / 25

  3. Computational Lemmas Error Bound Example Outline Computational Lemmas 1 Error Bound for Euler’s Method 2 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 2 / 25

  4. Computational Lemmas Error Bound Example Outline Computational Lemmas 1 Error Bound for Euler’s Method 2 Error Bound Example 3 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 2 / 25

  5. Computational Lemmas Error Bound Example Outline Computational Lemmas 1 Error Bound for Euler’s Method 2 Error Bound Example 3 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 3 / 25

  6. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Lemma 1 For all x ≥ − 1 and any positive m , we have 0 ≤ ( 1 + x ) m ≤ e mx Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 4 / 25

  7. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 1 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 5 / 25

  8. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 1 Applying Taylor’s Theorem with f ( x ) = e x , x 0 = 0, and n = 1 gives e x = 1 + x + 1 2 x 2 e ξ where ξ is between x and zero. Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 5 / 25

  9. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 1 Applying Taylor’s Theorem with f ( x ) = e x , x 0 = 0, and n = 1 gives e x = 1 + x + 1 2 x 2 e ξ where ξ is between x and zero. Thus 0 ≤ 1 + x ≤ 1 + x + 1 2 x 2 e ξ = e x Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 5 / 25

  10. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 1 Applying Taylor’s Theorem with f ( x ) = e x , x 0 = 0, and n = 1 gives e x = 1 + x + 1 2 x 2 e ξ where ξ is between x and zero. Thus 0 ≤ 1 + x ≤ 1 + x + 1 2 x 2 e ξ = e x and, because 1 + x ≥ 0, we have 0 ≤ ( 1 + x ) m ≤ ( e x ) m = e mx Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 5 / 25

  11. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Lemma 2 If s and t are positive real numbers, { a i } k i = 0 is a sequence satisfying a 0 ≥ − t / s Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 6 / 25

  12. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Lemma 2 If s and t are positive real numbers, { a i } k i = 0 is a sequence satisfying a 0 ≥ − t / s and a i + 1 ≤ ( 1 + s ) a i + t for each i = 0 , 1 , 2 , . . . , k − 1, Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 6 / 25

  13. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Lemma 2 If s and t are positive real numbers, { a i } k i = 0 is a sequence satisfying a 0 ≥ − t / s and a i + 1 ≤ ( 1 + s ) a i + t for each i = 0 , 1 , 2 , . . . , k − 1, then a 0 + t − t � � a i + 1 ≤ e ( i + 1 ) s s s Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 6 / 25

  14. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  15. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t implies that a i + 1 ( 1 + s ) a i + t ≤ Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  16. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t implies that a i + 1 ( 1 + s ) a i + t ≤ ( 1 + s )[( 1 + s ) a i − 1 + t ] + t ≤ Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  17. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t implies that a i + 1 ( 1 + s ) a i + t ≤ ( 1 + s )[( 1 + s ) a i − 1 + t ] + t ≤ ( 1 + s ) 2 a i − 1 + [ 1 + ( 1 + s )] t = Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  18. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t implies that a i + 1 ( 1 + s ) a i + t ≤ ( 1 + s )[( 1 + s ) a i − 1 + t ] + t ≤ ( 1 + s ) 2 a i − 1 + [ 1 + ( 1 + s )] t = � 1 + ( 1 + s ) + ( 1 + s ) 2 � ( 1 + s ) 3 a i − 2 + t ≤ Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  19. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas Proof of Lemma 2 (1/3) For a fixed integer i , the inequality a i + 1 ≤ ( 1 + s ) a i + t implies that a i + 1 ( 1 + s ) a i + t ≤ ( 1 + s )[( 1 + s ) a i − 1 + t ] + t ≤ ( 1 + s ) 2 a i − 1 + [ 1 + ( 1 + s )] t = � 1 + ( 1 + s ) + ( 1 + s ) 2 � ( 1 + s ) 3 a i − 2 + t ≤ . . . ( 1 + s ) i + 1 a 0 + 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � � t ≤ Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 7 / 25

  20. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � � t Proof of Lemma 2 (2/3) Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 8 / 25

  21. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � � t Proof of Lemma 2 (2/3) But i 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i = ( 1 + s ) j � j = 0 is a geometric series with ratio ( 1 + s ) Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 8 / 25

  22. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � � t Proof of Lemma 2 (2/3) But i 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i = ( 1 + s ) j � j = 0 is a geometric series with ratio ( 1 + s ) that sums to 1 − ( 1 + s ) i + 1 = 1 s [( 1 + s ) i + 1 − 1 ] 1 − ( 1 + s ) Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 8 / 25

  23. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + � 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � t Proof of Lemma 2 (3/3) Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 9 / 25

  24. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + � 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � t Proof of Lemma 2 (3/3) Thus a i + 1 ≤ ( 1 + s ) i + 1 a 0 + ( 1 + s ) i + 1 − 1 a 0 + t − t � � t = ( 1 + s ) i + 1 s s s Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 9 / 25

  25. Computational Lemmas Error Bound Example Euler’s Method: Computational Lemmas a i + 1 ≤ ( 1 + s ) i + 1 a 0 + � 1 + ( 1 + s ) + ( 1 + s ) 2 + · · · + ( 1 + s ) i � t Proof of Lemma 2 (3/3) Thus a i + 1 ≤ ( 1 + s ) i + 1 a 0 + ( 1 + s ) i + 1 − 1 a 0 + t − t � � t = ( 1 + s ) i + 1 s s s and using Lemma 1 with x = 1 + s gives a 0 + t − t � � a i + 1 ≤ e ( i + 1 ) s s . s Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 9 / 25

  26. Computational Lemmas Error Bound Example Outline Computational Lemmas 1 Error Bound for Euler’s Method 2 Error Bound Example 3 Numerical Analysis (Chapter 5) Euler’s Method II: Error Bounds R L Burden & J D Faires 10 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend