initial value problems for odes euler s method i
play

Initial-Value Problems for ODEs Eulers Method I: Introduction - PowerPoint PPT Presentation

Initial-Value Problems for ODEs Eulers Method I: Introduction Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University 2011 Brooks/Cole, Cengage Learning c


  1. Initial-Value Problems for ODEs Euler’s Method I: Introduction Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University � 2011 Brooks/Cole, Cengage Learning c

  2. Derivation Algorithm Geometric Interpretation Example Outline Derivation of Euler’s Method 1 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 2 / 23

  3. Derivation Algorithm Geometric Interpretation Example Outline Derivation of Euler’s Method 1 Numerical Algorithm 2 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 2 / 23

  4. Derivation Algorithm Geometric Interpretation Example Outline Derivation of Euler’s Method 1 Numerical Algorithm 2 Geometric Interpretation 3 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 2 / 23

  5. Derivation Algorithm Geometric Interpretation Example Outline Derivation of Euler’s Method 1 Numerical Algorithm 2 Geometric Interpretation 3 Numerical Example 4 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 2 / 23

  6. Derivation Algorithm Geometric Interpretation Example Outline Derivation of Euler’s Method 1 Numerical Algorithm 2 Geometric Interpretation 3 Numerical Example 4 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 3 / 23

  7. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation Obtaining Approximations Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 4 / 23

  8. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation Obtaining Approximations The object of Euler’s method is to obtain approximations to the well-posed initial-value problem dy dt = f ( t , y ) , a ≤ t ≤ b , y ( a ) = α Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 4 / 23

  9. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation Obtaining Approximations The object of Euler’s method is to obtain approximations to the well-posed initial-value problem dy dt = f ( t , y ) , a ≤ t ≤ b , y ( a ) = α A continuous approximation to the solution y ( t ) will not be obtained; Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 4 / 23

  10. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation Obtaining Approximations The object of Euler’s method is to obtain approximations to the well-posed initial-value problem dy dt = f ( t , y ) , a ≤ t ≤ b , y ( a ) = α A continuous approximation to the solution y ( t ) will not be obtained; Instead, approximations to y will be generated at various values, called mesh points, in the interval [ a , b ] . Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 4 / 23

  11. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation Obtaining Approximations The object of Euler’s method is to obtain approximations to the well-posed initial-value problem dy dt = f ( t , y ) , a ≤ t ≤ b , y ( a ) = α A continuous approximation to the solution y ( t ) will not be obtained; Instead, approximations to y will be generated at various values, called mesh points, in the interval [ a , b ] . Once the approximate solution is obtained at the points, the approximate solution at other points in the interval can be found by interpolation. Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 4 / 23

  12. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Set up an equally-distributed mesh Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 5 / 23

  13. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Set up an equally-distributed mesh We first make the stipulation that the mesh points are equally distributed throughout the interval [ a , b ] . Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 5 / 23

  14. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Set up an equally-distributed mesh We first make the stipulation that the mesh points are equally distributed throughout the interval [ a , b ] . This condition is ensured by choosing a positive integer N and selecting the mesh points t i = a + ih , for each i = 0 , 1 , 2 , . . . , N . Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 5 / 23

  15. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Set up an equally-distributed mesh We first make the stipulation that the mesh points are equally distributed throughout the interval [ a , b ] . This condition is ensured by choosing a positive integer N and selecting the mesh points t i = a + ih , for each i = 0 , 1 , 2 , . . . , N . The common distance between the points h = ( b − a ) / N = t i + 1 − t i is called the step size. Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 5 / 23

  16. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Use Taylor’s Theorem to derive Euler’s Method Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 6 / 23

  17. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d Use Taylor’s Theorem to derive Euler’s Method Suppose that y ( t ) , the unique solution to dy dt = f ( t , y ) , a ≤ t ≤ b , y ( a ) = α has two continuous derivatives on [ a , b ] , so that for each i = 0 , 1 , 2 , . . . , N − 1, y ( t i + 1 ) = y ( t i ) + ( t i + 1 − t i ) y ′ ( t i ) + ( t i + 1 − t i ) 2 y ′′ ( ξ i ) 2 for some number ξ i in ( t i , t i + 1 ) . Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 6 / 23

  18. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + ( t i + 1 − t i ) y ′ ( t i ) + ( t i + 1 − t i ) 2 y ′′ ( ξ i ) 2 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 7 / 23

  19. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + ( t i + 1 − t i ) y ′ ( t i ) + ( t i + 1 − t i ) 2 y ′′ ( ξ i ) 2 Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 7 / 23

  20. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + ( t i + 1 − t i ) y ′ ( t i ) + ( t i + 1 − t i ) 2 y ′′ ( ξ i ) 2 Because h = t i + 1 − t i , we have y ( t i + 1 ) = y ( t i ) + hy ′ ( t i ) + h 2 2 y ′′ ( ξ i ) and, because y ( t ) satisfies the differential equation y ′ = f ( t , y ) , we write y ( t i + 1 ) = y ( t i ) + hf ( t i , y ( t i )) + h 2 2 y ′′ ( ξ i ) Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 7 / 23

  21. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + hf ( t i , y ( t i )) + h 2 2 y ′′ ( ξ i ) Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 8 / 23

  22. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + hf ( t i , y ( t i )) + h 2 2 y ′′ ( ξ i ) Euler’s Method Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 8 / 23

  23. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + hf ( t i , y ( t i )) + h 2 2 y ′′ ( ξ i ) Euler’s Method Euler’s method constructs w i ≈ y ( t i ) , for each i = 1 , 2 , . . . , N , by deleting the remainder term. Thus Euler’s method is w 0 = α w i + 1 w i + hf ( t i , w i ) , for each i = 0 , 1 , . . . , N − 1 = Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 8 / 23

  24. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Derivation (Cont’d y ( t i + 1 ) = y ( t i ) + hf ( t i , y ( t i )) + h 2 2 y ′′ ( ξ i ) Euler’s Method Euler’s method constructs w i ≈ y ( t i ) , for each i = 1 , 2 , . . . , N , by deleting the remainder term. Thus Euler’s method is w 0 = α w i + 1 w i + hf ( t i , w i ) , for each i = 0 , 1 , . . . , N − 1 = This equation is called the difference equation associated with Euler’s method. Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 8 / 23

  25. Derivation Algorithm Geometric Interpretation Example Euler’s Method: Illustration Applying Euler’s Method Prior to introducing an algorithm for Euler’s Method, we will illustrate the steps in the technique to approximate the solution to y ′ = y − t 2 + 1 , 0 ≤ t ≤ 2 , y ( 0 ) = 0 . 5 at t = 2. using a step size of h = 0 . 5. Numerical Analysis (Chapter 5) Euler’s Method I: Introduction R L Burden & J D Faires 9 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend