information theoretic security
play

Information Theoretic Security S ennur Ulukus Department of ECE - PowerPoint PPT Presentation

Information Theoretic Security S ennur Ulukus Department of ECE University of Maryland ulukus@umd.edu Joint work with Raef Bassily, Ersen Ekrem, Nan Liu, Shabnam Shafiee. 2012 European School of Information Theory April 2012


  1. Achievability of the Secrecy Capacity-IV • Equivocation calculation. • We have the following: H ( W s | Z n ) = H ( W s , ˜ W s | Z n ) − H ( ˜ W s | W s , Z n ) W s ; Z n ) − H ( ˜ W s | W s , Z n ) = H ( W s , ˜ W s ) − I ( W s , ˜ W s ) − I ( X n ; Z n ) − H ( ˜ W s | W s , Z n ) ≥ H ( W s , ˜ W s ) − I ( X n ; Z n ) − H ( ˜ W s | W s , Z n ) = H ( W s )+ H ( ˜ which is I ( W s ; Z n ) ≤ I ( X n ; Z n )+ H ( ˜ W s | W s , Z n ) − H ( ˜ W s ) • We treat each term separately 21

  2. Achievability of the Secrecy Capacity-V • We have H ( ˜ W s ) = n ˜ R s = nI ( X ; Z ) • We have n I ( X n ; Z n ) ≤ ∑ I ( X i ; Z i ) ≤ n ( I ( X ; Z )+ γ n ) i = 1 • Finally, we consider W s | W s , Z n ) H ( ˜ W s ) can take 2 n ˜ R s values where ˜ • Given W s = w s , x n ( w s , ˜ R s = I ( X ; Z ) • Thus, the eavesdropper can decode ˜ W s given W s = w s by looking for the unique ˜ w s such that ( x n ( w s , ˜ w s ) , Z n ) is jointly typical. • Hence, from Fano’s lemma: W s | W s , Z n ) ≤ n β n H ( ˜ 22

  3. Achievability of the Secrecy Capacity-VI • Combining all these findings yields 1 nI ( W s ; Z n ) ≤ β n + γ n • Since β n , γ n → 0 when n → ∞ , we have 1 nI ( W s ; Z n ) = 0 lim n → ∞ i.e., perfect secrecy is achieved. • Thus, R s = I ( X ; Y ) − I ( X ; Z ) is an achievable perfect secrecy rate 23

  4. Achievability of the Entire Rate-Equivocation Region-I • So far, we showed the achievability of R s = I ( X ; Y ) − I ( X ; Z ) R = I ( X ; Y ) − I ( X ; Z ) • We will now show the achievability of R s = I ( X ; Y ) − I ( X ; Z ) R = I ( X ; Y ) • In the perfect secrecy case, each secret message W s is associated with many codewords X n ( W s , ˜ W s ) • Legitimate user decodes both W s and ˜ W s • There is a rate for ˜ W s which does not carry any information content • ˜ W s can be replaced with some information on which there is no secrecy constraint, i.e., it does not need to be confidential: – Rate-equivocation region 24

  5. Achievability of the Entire Rate-Equivocation Region-II • Each message W is divided into two parts: – Secret message W s – Public message W p • We have doubly indexed codewords X n ( W s , W p ) • We need to show – Rate R = R s + R p can be delivered to Bob – Rate R s can be kept hidden from Eve 25

  6. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Achievability of the Entire Rate-Equivocation Region-III • Codebook used to show achievability nR 2 p nR 1,1 1, j 1, 2 p 1,2 . . . . . . 2,1 2,2 2, j nR 2,2 p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR 2 s , nR i j i ,1 i ,2 i ,2 p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nR nR nR nR nR 2 ,1 2 ,2 2 , j 2 ,2 p s s s s . . . . . . R I X Y ; I X Z ; , R I X Z ; s p 26

  7. Achievability of the Entire Rate-Equivocation Region-IV • R = R s + R p can be delivered to Bob as long as R s + R p ≤ I ( X ; Y ) • We set R p as R p = I ( X ; Z ) • Equivocation calculation: H ( W | Z n ) = H ( W s , W p | Z n ) = H ( W s , W p ) − I ( W s , W p ; Z n ) ≥ H ( W s , W p ) − I ( X n ; Z n ) = H ( W s )+ H ( W p ) − I ( X n ; Z n ) • As n → ∞ , ( X n ( w s , w p ) , Z n ) will be jointly typical with high probability: I ( X n ; Z n ) ≤ nI ( X ; Z )+ n γ n 27

  8. Achievability of the Entire Rate-Equivocation Region-V • Equivocation computation proceeds as follows H ( W | Z n ) ≥ H ( W s )+ H ( W p ) − nI ( X ; Z ) − n γ n = H ( W s ) − n γ n = n [ I ( X ; Y ) − I ( X ; Z )] − n γ n • Thus, we have 1 nH ( W | Z n ) ≥ I ( X ; Y ) − I ( X ; Z ) lim n → ∞ i.e., I ( X ; Y ) − I ( X ; Z ) is an achievable equivocation rate. • Therefore, rate R = I ( X ; Y ) can be achieved with equivocation R e = I ( X ; Y ) − I ( X ; Z ) . 28

  9. � � � � � Stochastic Encoding: 64-QAM Example-I Bob’s Noise Eve’s Noise Bob’s Constellation Eve’s Constellation C � log 64 6 b/s C � log 16 4 b/s B 2 E 2 C C C 2 b/s s B E 29

  10. Stochastic Encoding: 64-QAM Example-II Message 1 Message 2 Message 3 Message 4 30

  11. Stochastic Encoding: 64-QAM Example-III Message 1 Message 2 Message 3 Message 4 31

  12. Stochastic Encoding: 64-QAM Example-IV Message 1 Message 2 Message 3 Message 4 32

  13. Stochastic Encoding: 64-QAM Example-V Message 1 Message 2 Message 3 Message 4 33

  14. � � General Wiretap Channel • Csiszar and Korner considered the general wiretap channel in 1978. • They extended Wyner’s model in two ways – Eve’s signal is not necessarily a degraded version of Bob’s signal. – There is a common message for both Eve and Bob Y ˆ W Bob W X V Alice n H W Z | Z Eve 34

  15. General Wiretap Channel: Capacity-Equivocation Region • Capacity-equivocation region is obtained as union of rate triples ( R 0 , R 1 , R e ) satisfying R 0 ≤ min { I ( U ; Y ) , I ( U ; Z ) } R 0 + R 1 ≤ I ( V ; Y | U )+ min { I ( U ; Y ) , I ( U ; Z ) } R e ≤ I ( V ; Y | U ) − I ( V ; Z | U ) for some ( U , V ) such that U → V → X → Y → Z • New ingredients in the achievable scheme: – Superposition coding to accommodate the common message – Channel prefixing 35

  16. Outline of Achievability • Achievability of the following region is shown R 0 ≤ min { I ( U ; Y ) , I ( U ; Z ) } R 0 + R 1 ≤ I ( X ; Y | U )+ min { I ( U ; Y ) , I ( U ; Z ) } R e ≤ I ( X ; Y | U ) − I ( X ; Z | U ) for some ( U , X ) such that U → X → Y → Z • Channel prefixing, i.e., introduction of a hypothetical channel between U and X by means of V , gives the capacity region 36

  17. General Capacity-Equivocation Region (for R 0 = 0 ) • When there is no common message, capacity-equivocation region R ≤ I ( V ; Y ) R e ≤ I ( V ; Y | U ) − I ( V ; Z | U ) for some ( U , V ) such that U → V → X → Y → Z • Even if common message is not present, we still need two auxiliary rv.s – V : channel prefixing – U : rate splitting • In other words, we still need superposition coding 37

  18. General Capacity-Equivocation Region (for R 0 = 0 ): Achievability • Divide message W into three parts: W ′ p , W ′′ p , W s • W ′ p , W ′′ p are public messages on which there is no secrecy constraint • W s is the confidential part which needs to be transmitted in perfect secrecy • W ′ p is transmitted by the first layer, i.e., U • W ′′ p , W s are transmitted by the second layer, i.e., V • Similar to Wyner’s scheme, W ′′ p has two roles – Carries part of the public information on which there is no secrecy constraint – Provides protection for W s 38

  19. � � Secrecy Capacity for General Wiretap Channel • Secrecy capacity is C s = U → V → X → ( Y , Z ) I ( V ; Y | U ) − I ( V ; Z | U ) max U → V → X → ( Y , Z ) ∑ = p U ( u ) I ( V ; Y | U = u ) − I ( V ; Z | U = u ) max u = V → X → ( Y , Z ) I ( V ; Y ) − I ( V ; Z ) max Y ˆ W Bob W X V Alice n H W Z | Z Eve 39

  20. Secrecy Capacity for General Wiretap Channel: Channel Prefixing • The secrecy capacity: C s = V → X → YZ I ( V ; Y ) − I ( V ; Z ) max • The new ingredient: channel prefixing through the introduction of V . • No channel prefixing is a special case of channel prefixing by choosing V = X . 40

  21. � � Channel Prefixing • A virtual channel from V to X . • Additional stochastic mapping from the message to the channel input: W → V → X . • Real channel: X → Y and X → Z . Constructed channel: V → Y and V → Z . ˆ Y W Bob X W V Alice Z n | H W Z Eve • With channel prefixing: V → X → Y , Z . • From DPI, both mutual informations decrease, but the difference may increase. • The secrecy capacity: C s = V → X → YZ I ( V ; Y ) − I ( V ; Z ) max 41

  22. Converse-I • Csiszar sum lemma is crucial: Lemma 1 Let T n , U n be length-n random vectors, and G be a random variable. We have n n i + 1 ; T i | G , T i − 1 ) = I ( T i − 1 ; U i | G , U n I ( U n ∑ ∑ i + 1 ) i = 1 i = 1 • Due to secrecy condition, we have I ( W s ; Z n ) ≤ n γ n where γ n → 0 as n → ∞ . • Fano’s lemma implies H ( W s | Y n ) ≤ n ε n where ε n → 0 as n → ∞ . 42

  23. Converse-II • Thus, we have nR s = H ( W s ) ≤ I ( W s ; Y n )+ n ε n ≤ I ( W s ; Y n ) − I ( W s ; Z n )+ n ( ε n + γ n ) n I ( W s ; Y i | Y i − 1 ) − I ( W s ; Z i | Z n ∑ = i + 1 )+ n ( ε n + γ n ) i = 1 n I ( W s ; Y i | Y i − 1 ) − I ( W s ; Z i | Z n i + 1 ; Y i | W s , Y i − 1 ) − I ( Y i − 1 ; Z i | W s , Z n i + 1 )+ I ( Z n ∑ = i + 1 )+ n ( ε n + γ n ) i = 1 n i + 1 ; Y i | Y i − 1 ) − I ( W s , Y i − 1 ; Z i | Z n I ( W s , Z n ∑ = i + 1 )+ n ( ε n + γ n ) i = 1 n I ( W s ; Y i | Y i − 1 , Z n i + 1 , Y i − 1 )+ I ( Z n i + 1 ; Y i | Y i − 1 ) − I ( Y i − 1 ; Z i | Z n ∑ i + 1 ) − I ( W s ; Z i | Z n = i + 1 )+ n ( ε n + γ n ) i = 1 n I ( W s ; Y i | Y i − 1 , Z n i + 1 , Y i − 1 )+ n ( ε n + γ n ) i + 1 ) − I ( W s ; Z i | Z n ∑ = i = 1 where the underlined terms are equal due to Csiszar sum lemma. 43

  24. Converse-III • We define U i = Y i − 1 Z n i + 1 V i = W s U i which satisfy U i → V i → X i → Y i , Z i • Thus, we have n ∑ nR s ≤ I ( V i ; Y i | U i ) − I ( V i ; Z i | U i )+ n ( ε n + γ n ) i = 1 • After single-letterization R s ≤ I ( V ; Y | U ) − I ( V ; Z | U ) • Thus, we have C s ≤ U → V → X → Y , Z I ( V ; Y | U ) − I ( V ; Z | U ) max = V → X → Y , Z I ( V ; Y ) − I ( V ; Z ) max 44

  25. Reduction to the Degraded Case • If the channel is degraded, i.e., X → Y → Z we have I ( X ; Y | V ) − I ( X ; Z | V ) = I ( X ; Y , Z | V ) − I ( X ; Z | V ) = I ( X ; Y | V , Z ) ≥ 0 where V is such that V → X → Y → Z . • Hence, for degraded wiretap channel, we have C s = V → X → Y , Z I ( V ; Y ) − I ( V ; Z ) max ≤ V → X → Y , Z I ( V ; Y ) − I ( V ; Z )+ I ( X ; Y | V ) − I ( X ; Z | V ) max = V → X → Y , Z I ( V , X ; Y ) − I ( V , X ; Z ) max = V → X → Y , Z I ( X ; Y ) − I ( X ; Z )+ I ( V ; Y | X ) − I ( V ; Z | X ) max ≤ max X → Y , Z I ( X ; Y ) − I ( X ; Z ) 45

  26. � � Gaussian Wiretap Channel • Leung-Yang-Cheong and Hellman considered the Gaussian wire-tap channel in 1978. Y = X + N Y Z = X + N Z Y ˆ W Bob W X Alice n H W Z | Z Eve • Key observation: Capacity-equivocation region depends on the marginal distributions p ( y | x ) and p ( z | x ) , but not the joint distribution p ( y , z | x ) • Gaussian case: Capacity-equivocation region does not depend on the correlation between N Y and N Z 46

  27. Gaussian Wiretap Channel is Degraded • Eve’s signal is Bob’s signal plus Gaussian noise, or vice versa: a degraded wiretap channel: – If σ 2 Y ≥ σ 2 Z , Y = Z + ˜ N X → Z → Y – If σ 2 Z ≥ σ 2 Y , Z = Y + ˜ N X → Y → Z • No channel prefixing is necessary and Gaussian signalling is optimal. • The secrecy capacity: C s = X → Y → Z I ( X ; Y ) − I ( X ; Z ) max (1) • We know that Gaussian X maximizes both I ( X ; Y ) and I ( X ; Z ) . • What maximizes the difference? 47

  28. Gaussian Wiretap Channel – Secrecy Capacity • Secrecy capacity can be obtained in three ways: – Entropy-power inequality e 2 h ( U + V ) ≥ e 2 h ( U ) + e 2 h ( V ) – I-MMSE formula � snr I ( X ; √ snr X + N ) = 1 √ mmse ( X / tX + N ) dt 2 0 – Conditional maximum entropy theorem h ( V | U ) ≤ h ( V G | U G ) 48

  29. Gaussian Wiretap Channel Secrecy Capacity via EPI • Using entropy-power inequality: I ( X ; Y ) − I ( X ; Z ) = I ( X ; Y ) − I ( X ; Y + ˜ N ) 2 log σ 2 N ) − 1 = h ( Y ) − h ( Y + ˜ Y σ 2 Z 2 log σ 2 ≤ h ( Y ) − 1 Y )) − 1 2 log ( e 2 h ( Y ) + 2 π e ( σ 2 Z − σ 2 Y σ 2 Z 2 log σ 2 ≤ 1 Y ) − 1 Y )) − 1 2 log ( 2 π e )( P + σ 2 2 log (( 2 π e )( P + σ 2 Y )+( 2 π e )( σ 2 Z − σ 2 Y σ 2 Z � � � � = 1 1 + P − 1 1 + P 2 log 2 log σ 2 σ 2 Y Z = C B − C E which can be achieved by Gaussian X . • The secrecy capacity: X → Y → Z I ( X ; Y ) − I ( X ; Z ) = [ C B − C E ] + C s = max i.e., the difference of two capacities. 49

  30. � � � � Caveat: Need Channel Advantage The secrecy capacity: C s = [ C B − C E ] + Bob’s channel is better Eve’s channel is better Y ˆ W Y ˆ W Bob Bob W X X W Alice Alice n H W Z | n H W Z | Z Z Eve Eve positive secrecy no secrecy C s = C B − C E C s = 0 50

  31. Outlook at the End of 1970s and Transition into 2000s • Information theoretic secrecy is extremely powerful: – no limitation on Eve’s computational power – no limitation on Eve’s available information – yet, we are able to provide secrecy to the legitimate user – unbreakable, provable, and quantifiable (in bits/sec/hertz) secrecy • We seem to be at the mercy of the nature: – if Bob’s channel is stronger, positive perfect secrecy rate – if Eve’s channel is stronger, no secrecy • We need channel advantage. Can we create channel advantage? • Wireless channel provides many options: – time, frequency, multi-user diversity – cooperation via overheard signals – use of multiple antennas – signal alignment 51

  32. � � Fading Wiretap Channel • In the Gaussian wiretap channel, secrecy is not possible if C B ≤ C E • Fading provides time-diversity: Can it be used to obtain/improve secrecy? Y ˆ W Bob W X Alice n | H W Z Z Eve 52

  33. � � MIMO Wiretap Channel • In SISO Gaussian wiretap channel, secrecy is not possible if C B ≤ C E • Multiple antennas improve reliability and rates. How about secrecy? ˆ Y W . W X . . Bob Alice . . . Z n H W Z | Eve 53

  34. � � Broadcast (Downlink) Channel • In cellular communications: base station to end-users channel can be eavesdropped. • This channel can be modelled as a broadcast channel with an external eavesdropper. Y ˆ 1 W 1 Bob 1 X , W W 1 2 Y ˆ W 2 2 Alice Bob 2 Z n H W W , | Z 1 2 Eve 54

  35. Internal Security within a System • Legitimate users may have different security clearances. • Some legitimate users may have paid for some content, some may not have. • Broadcast channel with two confidential messages. Y 1 ˆ , n W H W ( | Y ) 1 2 1 Bob\Eve 1 W W , X 1 2 Alice Y 2 ˆ , n ( | ) W H W Y 2 1 2 Bob\Eve 2 55

  36. � � Multiple Access (Uplink) Channel • In cellular communications: end-user to the base station channel can be eavesdropped. • This channel can be modelled as a multiple access channel with an external eavesdropper. W X 1 1 Y Alice ˆ ˆ W W , 1 2 X W 2 Bob 2 Charles Z n H W W , | Z 1 2 Eve 56

  37. � � Cooperative Channels • Overheard information at communicating parties: – Forms the basis for cooperation – Results in loss of confidentiality • How do cooperation and secrecy interact? • Simplest model to investigate this interaction: relay channel with secrecy constraints. – Can Charles help without learning the messages going to Bob? Charles\Eve n H W Y | 1 X Y 2 1 X Y ˆ 1 W W Bob Alice 57

  38. � � Fading Wiretap Channel-I • In the Gaussian wiretap channel, secrecy is not possible if C B ≤ C E • Fading provides a time-diversity: It can be used to obtain/improve secrecy. Y ˆ W Bob W X Alice n | H W Z Z Eve • Two scenarios for the ergodic secrecy capacity: – CSIT of both Bob and Eve: Liang-Poor-Shamai, Li-Yates-Trappe, Gopala-Lai-El Gamal. – CSIT of Bob only: Khisti-Tchamkerten-Wornell, Li-Yates-Trappe, Gopala-Lai-El Gamal. 58

  39. � � Fading (i.e., Parallel) Wiretap Channel-II • Fading channel model: Y = h Y X + N Y Z = h Z X + N Z • Assume full CSIT and CSIR. • Parallel wiretap channel provides the framework to analyze the fading wiretap channel Y Bob 1 Y ˆ 2 W X 1 Y 3 X Z 2 1 W n n n | , , H W Z Z Z Z 1 2 3 X 2 3 Alice Eve Z 3 59

  40. Fading Wiretap Channel-III • Secrecy capacity of the parallel wiretap channel can be obtained as follows [Liang-Poor-Shamai, 2008] C s = V → X L → ( Y L , Z L ) I ( V ; Y 1 ,..., Y L ) − I ( V ; Z 1 ,..., Z L ) max L I ( V ; Y l | Y l − 1 ) − I ( V ; Z l | Z L ∑ = l + 1 ) max V → X L → ( Y L , Z L ) l = 1 L l + 1 ; Y l | Y l − 1 ) − I ( V , Y l − 1 ; Z l | Z L l + 1 ; Y l | Y l − 1 , V ) ∑ I ( V , Z L l + 1 )+ I ( Z L = max V → X L → ( Y L , Z L ) l = 1 − I ( Y l − 1 ; Z l | Z L l + 1 , V ) L l + 1 ; Y l | Y l − 1 ) − I ( V , Y l − 1 ; Z l | Z L ∑ I ( V , Z L = l + 1 ) max V → X L → ( Y L , Z L ) l = 1 where underlined terms are identical due to Csiszar sum lemma. 60

  41. Fading Wiretap Channel-IV L I ( V , Z L l + 1 ; Y l | Y l − 1 ) − I ( V , Y l − 1 ; Z l | Z L ∑ C s = l + 1 ) max V → X L → ( Y L , Z L ) l = 1 L I ( V ; Y l | Y l − 1 , Z L l + 1 ) − I ( V ; Z l | Z L l + 1 , Y l − 1 )+ I ( Z L l + 1 ; Y l | Y l − 1 ) − I ( Y l − 1 ; Z l | Z L ∑ = l + 1 ) max V → X L → ( Y L , Z L ) l = 1 L I ( V ; Y l | Y l − 1 , Z L l + 1 , Y l − 1 ) ∑ l + 1 ) − I ( V ; Z l | Z L = max V → X L → ( Y L , Z L ) l = 1 L I ( V , Y l − 1 , Z L l + 1 ; Y l | Y l − 1 , Z L l + 1 ) − I ( V , Y l − 1 , Z L l + 1 , Y l − 1 ) l + 1 ; Z l | Z L ∑ = max V → X L → ( Y L , Z L ) l = 1 L ∑ = I ( V l ; Y l | Q l ) − I ( V l ; Z l | Q l ) max { Q l → V l → X l → ( Y l , Z l ) } L l = 1 l = 1 L ∑ = Q l → V l → X l → ( Y l , Z l ) I ( V l ; Y l | Q l ) − I ( V l ; Z l | Q l ) max l = 1 � � L L ∑ ∑ = V l → X l → ( Y l , Z l ) I ( V l ; Y l ) − I ( V l ; Z l ) = max C sl l = 1 l = 1 61

  42. Fading Wiretap Channel-V • Each realization of ( h Y , h Z ) can be viewed as a sub-channel occurring with some probability • Averaging over all possible channel realizations gives the ergodic secrecy capacity � 1 � � � �� 1 + h 2 1 + h 2 Y P ( h Y , h Z ) Z P ( h Y , h Z ) − 1 C s = max E 2 log 2 log σ 2 σ 2 Y Z where the maximization is over all power allocation schemes P ( h Y , h Z ) satisfying constraint E [ P ( h Y , h Z )] ≤ P • If h 2 Y ≤ h 2 Y Z Z , term inside the expectation is negative: σ 2 σ 2 if h 2 ≤ h 2 Y Z P ( h Y , h Z ) = 0 σ 2 σ 2 Y Z • Optimal power allocation is water-filling over the states ( h Y , h Z ) satisfying h 2 ≥ h 2 Y Z σ 2 σ 2 Y Z 62

  43. � � Gaussian MIMO Wiretap Channel-I • Gaussian MIMO wiretap channel: Y = H Y X + N Y Z = H Z X + N Z ˆ Y W . W X . . Bob Alice . . . Z n H W Z | Eve • As opposed to the SISO case, MIMO channel is not necessarily degraded • As opposed to fading SISO, it cannot be expressed as a parallel channel 63

  44. Gaussian MIMO Wiretap Channel-II • Secrecy capacity [Shafiee-Liu-Ulukus, Khisti-Wornell, Oggier-Hassibi, Liu-Shamai]: C S = V → X → Y , Z I ( V ; Y ) − I ( V ; Z ) max � � � � 1 � − 1 � H M KH ⊤ � H E KH ⊤ � � � � = M + I E + I max 2 log 2 log � K :tr ( K ) ≤ P • No channel prefixing is necessary and Gaussian signalling is optimal. • As opposed to the SISO case, C S � = C B − C E . • Multiple antennas improve reliability and rates. They improve secrecy as well. 64

  45. Gaussian MIMO Wiretap Channel – Finding the Capacity • Secrecy capacity of any wiretap channel is known as an optimization problem: C s = max ( V , X ) I ( V ; Y ) − I ( V ; Z ) • MIMO wiretap channel is not degraded in general. – Therefore, V = X is potentially suboptimal. • There is no general methodology to solve this optimization problem, i.e., find optimal ( V , X ) . • The approach used by [Shafiee-Liu-Ulukus, Khisti-Wornell, Oggier-Hassibi]: – Compute an achievable secrecy rate by using a potentially suboptimal ( V , X ) : ∗ Jointly Gaussian ( V , X ) is a natural candidate. – Find a computable outer bound. – Show that these two expressions (achievable rate and outer bound) match. 65

  46. Gaussian MIMO Wiretap Channel – Finding the Capacity (Outer Bound) • Using Sato’s approach, a computable outer bound can be found: – Consider the enhanced Bob with observation ˜ Y = ( Y , Z ) – This new channel is degraded, no need for channel prefixing: X I ( X ; ˜ Y ) − I ( X ; Z ) = max X I ( X ; Y | Z ) max – And, optimal X is Gaussian. • This outer bound can be tightened: – The secrecy capacity is the same for channels having the same marginal distributions – We can correlate the receiver noises. • The tightened outer bound is: X I ( X ; Y | Z ) min max where the minimization is over all noise correlations. • The outer bound so developed matches the achievable rate. 66

  47. Insights from the Outer Bound • Sato-type outer bound is tight • This outer bound constructs a degraded wiretap channel from the original non-degraded one • Secrecy capacity of the constructed degraded channel is potentially larger than the original non-degraded one • However, they turn out to be the same • Indeed, these observations are a manifestation of channel enhancement: – Liu-Shamai provide an alternative proof for secrecy capacity via channel enhancement 67

  48. Secrecy Capacity via Channel Enhancement • Aligned Gaussian MIMO wiretap channel Y = X + N Y Z = X + N Z where N Y ∼ N ( 0 , Σ Y ) , N Z ∼ N ( 0 , Σ Z ) . • Channel input X is subject to a covariance constraint � XX ⊤ � � S E • Covariance constraint has advantages – A rather general constraint including total power and per-antenna power constraints as special cases – Yields an easier analysis 68

  49. Secrecy Capacity of Degraded Gaussian MIMO Wiretap Channel • Channel is degraded if it satisfies X → Y → Z which is equivalent to have Σ Y � Σ Z • In other words, we have N Z = N Y + ˜ N where ˜ N is Gaussian with covariance matrix Σ Z − Σ Y • Corresponding secrecy capacity C s = max p ( x ) I ( X ; Y ) − I ( X ; Z ) 2 log | Σ Y | p ( x ) h ( Y ) − h ( Z ) − 1 = max | Σ Z | 2 log | Σ Y | N ) − 1 p ( x ) h ( Y ) − h ( Y + ˜ = max | Σ Z | 2 log | Σ Y | N ) − 1 p ( x ) − I ( ˜ N ; Y + ˜ = max | Σ Z | 2 log | K + Σ Y | 2 log | Σ Y | 1 | K + Σ Z | − 1 = max | Σ Z | 0 � K � S 2 log | S + Σ Y | 2 log | S + Σ Z | = 1 − 1 | Σ Y | | Σ Z | 69

  50. Secrecy Capacity via Channel Enhancement-I • The following secrecy rate is achievable 2 log | K + Σ Y | 2 log | K + Σ Z | 1 − 1 C s ≥ max | Σ Y | | Σ Z | 0 � K � S • Optimal covariance matrix K ∗ needs to satisfy ( K ∗ + Σ Y ) − 1 + M = ( K ∗ + Σ Z ) − 1 + M S K ∗ M = MK ∗ = 0 ( S − K ∗ ) M S = M S ( S − K ∗ ) = 0 • We enhance the legitimate user as follows � − 1 = ( K ∗ + Σ Y ) − 1 + M � K ∗ + ˜ Σ Y which also implies � − 1 = ( K ∗ + Σ Z ) − 1 + M S K ∗ + ˜ � Σ Y • Thus, ˜ Σ Y satisfies ˜ ˜ Σ Y � Σ Y Σ Y � Σ Z and 70

  51. � � � Secrecy Capacity via Channel Enhancement-II • Enhanced channel: ˆ Y W Bob X Y W Enhanced Bob Alice n H W Z | Z Eve 71

  52. Secrecy Capacity via Channel Enhancement-III • Enhanced wiretap channel Y = X + ˜ ˜ N Y Z = X + N Z where ˜ N Y ∼ N ( 0 , ˜ Σ Y ) . • Since ˜ Σ Y � { Σ Y , Σ Z } , we have X → ˜ Y → { Y , Z } • Thus, the enhanced channel is degraded and ˜ C s ≥ C s 2 log | S + ˜ Σ Y | 2 log | S + Σ Z | C s = 1 − 1 ˜ | ˜ | Σ Z | Σ Y | 72

  53. Secrecy Capacity via Channel Enhancement-IV • Although secrecy capacity is potentially improved through the enhancement, indeed, there is a rate preservation ( K ∗ + ˜ Σ Y ) = ( K ∗ + Σ Z ) − 1 ( S + Σ Z ) Σ Y ) − 1 ( S + ˜ ( K ∗ + ˜ Σ Y = ( K ∗ + Σ Y ) − 1 Σ Y Σ Y ) − 1 ˜ • These identities imply 2 log | K ∗ + Σ Y | 2 log | K ∗ + Σ Z | 2 log | K ∗ + ˜ 2 log | K ∗ + Σ Z | Σ Y | 1 − 1 = 1 − 1 | ˜ | Σ Y | | Σ Z | | Σ Z | Σ Y | 2 log | S + ˜ Σ Y | 2 log | S + Σ Z | = 1 − 1 | ˜ | Σ Z | Σ Y | 73

  54. Secrecy Capacity via Channel Enhancement-V • We can obtain the secrecy capacity of the original channel as follows [Liu-Shamai, 2009] C s ≤ ˜ C s I ( X ; ˜ = Y ) − I ( X ; Z ) max X → ˜ Y , Z E [ XX ⊤ ] � S 2 log | S + ˜ Σ Y | 2 log | S + Σ Z | = 1 − 1 | ˜ | Σ Z | Σ Y | 2 log | K ∗ + ˜ 2 log | K ∗ + Σ Z | Σ Y | = 1 − 1 | ˜ | Σ Z | Σ Y | 2 log | K ∗ + Σ Y | 2 log | K ∗ + Σ Z | = 1 − 1 | Σ Y | | Σ Z | 2 log | K + Σ Y | 2 log | K + Σ Z | 1 − 1 = max | Σ Y | | Σ Z | 0 � K � S 74

  55. � � Multiple Access Wiretap Channel • An external eavesdropper listens in on the communication from end-users to the base station. W X 1 1 Y Alice ˆ ˆ , W W 1 2 X W 2 Bob 2 Charles Z n H W W , | Z 1 2 Eve • Introduced by Tekin-Yener in 2005: – Achievability of positive secrecy rates is shown. – Cooperative jamming is discovered. • Secrecy capacity is unknown in general 75

  56. � � An Achievable Rate Region for Multiple Access Wiretap Channel-I • Introduce two independent auxiliary random variables V 1 and V 2 . W V X 1 1 1 ˆ ˆ W W , Y Alice 1 2 X W V 2 2 2 Bob Charles Z n , | H W W Z 1 2 Eve • An achievable secrecy rate region with channel pre-fixing: R 1 ≤ I ( V 1 ; Y | V 2 ) − I ( V 1 ; Z ) R 2 ≤ I ( V 2 ; Y | V 1 ) − I ( V 2 ; Z ) R 1 + R 2 ≤ I ( V 1 , V 2 ; Y ) − I ( V 1 , V 2 ; Z ) where p ( v 1 , v 2 , x 1 , x 2 , y , z ) factors as p ( v 1 ) p ( v 2 ) p ( x 1 | v 1 ) p ( x 2 | v 2 ) p ( y , z | x 1 , x 2 ) . 76

  57. An Achievable Rate Region for Multiple Access Wiretap Channel-II 2 n ˜ R 1 � � 1 , 2 n ˜ R 1 (1 , 1) (1 , j ) . . . . . . . . . . . . . . . . . . . . . � � i, 2 n ˜ 2 nR 1 ( i, 1) R 1 ( i, j ) . . . . . . . . . . . Legitimate User . . . . . . . . . . � � 2 nR 1 , 2 n ˜ R 1 (2 nR 1 , 1) (2 R 1 , j ) . . . . . . 2 n ˜ R 2 � � 1 , 2 n ˜ R 2 (1 , 1) (1 , k ) . . . . . . . Eavesdropper . . . . . . . . . . . . . . � � l, 2 n ˜ 2 nR 2 ( l, 1) ( l, k ) R 2 . . . . . . . . . . . . . . . . . . . . . � � 2 nR 2 , 2 n ˜ R 2 (2 nR 2 , 1) (2 R 1 , k ) . . . . . . 77

  58. An Achievable Rate Region for Multiple Access Wiretap Channel-III • Achievability can be shown in two steps. • Show that the following region is achievable: R 1 ≤ I ( X 1 ; Y | X 2 ) − I ( X 1 ; Z ) R 2 ≤ I ( X 2 ; Y | X 1 ) − I ( X 2 ; Z ) R 1 + R 2 ≤ I ( X 1 , X 2 ; Y ) − I ( X 1 , X 2 ; Z ) where p ( x 1 , x 2 , y , z ) = p ( x 1 ) p ( x 2 ) p ( y | x 1 ) p ( z | x 2 ) . • Use channel prefixing at both users: V 1 → X 1 V 2 → X 2 78

  59. An Achievable Rate Region for Multiple Access Wiretap Channel-IV • Each user generates a codebook independently and uses stochastic encoding: X n j ( w j , ˜ w j ) , j = 1 , 2 where – w j is the j th message with rate R j w j is the confusion message with rate ˜ – ˜ R j . • Total rate sent through by the j th user is R j + ˜ R j • Legitimate transmitter decodes both w j and ˜ w j for both j : R 1 + ˜ R 1 ≤ I ( X 1 ; Y | X 2 ) R 2 + ˜ R 2 ≤ I ( X 2 ; Y | X 1 ) R 1 + R 2 + ˜ R 1 + ˜ R 2 ≤ I ( X 1 , X 2 ; Y ) 79

  60. An Achievable Rate Region for Multiple Access Wiretap Channel-V • W 1 and W 2 should be transmitted in perfect security: 1 nI ( W 1 , W 2 ; Z n ) = 0 lim n → ∞ which is ensured if ˜ R 1 and ˜ R 2 satisfy ˜ R 1 ≤ I ( X 1 ; Z | X 2 ) ˜ R 2 ≤ I ( X 2 ; Z | X 1 ) R 1 + ˜ ˜ R 2 = I ( X 1 , X 2 ; Z ) • Total rate of confusion messages is equal to the decoding capability of eavesdropper • Individual rates can vary as long as total rate is fixed 80

  61. An Achievable Rate Region for Multiple Access Wiretap Channel-VI • Hence, the following rate region is achievable R 1 + ˜ R 1 ≤ I ( X 1 ; Y | X 2 ) R 2 + ˜ R 2 ≤ I ( X 2 ; Y | X 1 ) R 1 + R 2 + ˜ R 1 + ˜ R 2 ≤ I ( X 1 , X 2 ; Y ) ˜ R 1 ≤ I ( X 1 ; Z | X 2 ) ˜ R 2 ≤ I ( X 2 ; Z | X 1 ) R 1 + ˜ ˜ R 2 = I ( X 1 , X 2 ; Z ) • Eliminate ˜ R 1 and ˜ R 2 by Fourier-Moztkin elimination • Use channel prefixing at each user 81

  62. � � Gaussian Multiple Access Wiretap Channel: Gaussian Signalling • Tekin-Yener 2005: Gaussian multiple access wiretap channel W V X 1 1 1 ˆ ˆ W W , Y Alice 1 2 X W V 2 2 Bob 2 Charles Z n H W W , | Z 1 2 Eve • Achievable secrecy region with no channel prefixing, X 1 = V 1 , X 2 = V 2 , Gaussian signals: � � R 1 ≤ 1 2 log ( 1 + h 1 P 1 ) − 1 g 1 P 1 1 + 2 log 1 + g 2 P 2 � � R 2 ≤ 1 2 log ( 1 + h 2 P 2 ) − 1 g 2 P 2 1 + 2 log 1 + g 1 P 1 R 1 + R 2 ≤ 1 2 log ( 1 + h 1 P 1 + h 2 P 2 ) − 1 2 log ( 1 + g 1 P 1 + g 2 P 2 ) 82

  63. Cooperative Jamming • Tekin-Yener, 2006: cooperative jamming technique. • Cooperative jamming is a form of channel pre-fixing: X 1 = V 1 + U 1 X 2 = V 2 + U 2 and where V 1 and V 2 carry messages and U 1 and U 2 are jamming signals. • Achievable secrecy rate region with cooperative jamming: � � � � R 1 ≤ 1 h 1 P 1 − 1 g 1 P 1 1 + 1 + 2 log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 Q 1 + g 2 ( P 2 + Q 2 ) � � � � R 2 ≤ 1 h 2 P 2 − 1 g 2 P 2 1 + 1 + 2 log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 ( P 1 + Q 1 )+ g 2 Q 2 � � � � h 1 P 1 + h 2 P 2 g 1 P 1 + g 2 P 2 R 1 + R 2 ≤ 1 − 1 1 + 1 + 2 log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 Q 1 + g 2 Q 2 where P 1 and P 2 are the powers of V 1 and V 2 and Q 1 and Q 2 are the powers of U 1 and U 2 . 83

  64. Weak Eavesdropper Multiple Access Wiretap Channel • For the weak eavesdropper case, Gaussian signalling is nearly optimal [Ekrem-Ulukus]. ≤ 0.5 bits/use R 2 ≤ 0.5 bits/use R 2 ≤ 0.5 bits/use R 1 R 1 Case I Cases II, III R 2 ≤ 0.5 bits/use R 1 Case IV • In general, Gaussian signalling is not optimal: – He-Yener showed that structured codes (e.g., lattice codes) outperform Gaussian codes. – Structured codes can provide secrecy rates that scale with logSNR. • The secrecy capacity of the multiple access wiretap channel is still open. 84

  65. � � Fading Multiple Access Wiretap Channel-I • Introduced by Tekin-Yener in 2007. • They provide achievable secrecy rates based on Gaussian signalling. • Main assumption: channel state information is known at all nodes. W X 1 1 ˆ ˆ Y W W , Alice 1 2 X W 2 2 Bob Charles Z n H W W , | Z 1 2 Eve 85

  66. Fading Multiple Access Wiretap Channel-II • Achievable rates without cooperative jamming: � � �� R 1 ≤ 1 log ( 1 + h 1 P 1 ) − 1 g 1 P 1 1 + 2 E h , g 2 log 1 + g 2 P 2 � � �� R 2 ≤ 1 log ( 1 + h 2 P 2 ) − 1 g 2 P 2 1 + 2 E h , g 2 log 1 + g 1 P 1 � � R 1 + R 2 ≤ 1 log ( 1 + h 1 P 1 + h 2 P 2 ) − 1 2 log ( 1 + g 1 P 1 + g 2 P 2 ) 2 E h , g • Achievable rates with cooperative jamming: � � � � �� R 1 ≤ 1 h 1 P 1 − 1 g 1 P 1 1 + 1 + 2 E h , g log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 Q 1 + g 2 ( P 2 + Q 2 ) � � � � �� R 2 ≤ 1 h 2 P 2 − 1 g 2 P 2 1 + 1 + 2 E h , g log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 ( P 1 + Q 1 )+ g 2 Q 2 � � � � �� h 1 P 1 + h 2 P 2 g 1 P 1 + g 2 P 2 R 1 + R 2 ≤ 1 − 1 1 + 1 + 2 E h , g log 2 log 1 + h 1 Q 1 + h 2 Q 2 1 + g 1 Q 1 + g 2 Q 2 • In both cases: No scaling with SNR. 86

  67. � � Scaling Based Alignment (SBA) – Introduction W X 1 1 h 1 ˆ ˆ Y W W , Alice 1 2 h X W 2 2 2 Bob g 1 Charles Z g n H W W , | Z 2 1 2 Eve Y = h 1 X 1 + h 2 X 2 + N Z = g 1 X 1 + g 2 X 2 + N ′ 87

  68. � � Scaling Based Alignment (SBA) – Introduction • Scaling at the transmitter: – Alice multiplies her channel input by the channel gain of Charles to Eve. – Charles multiplies his channel input by the channel gain of Alice to Eve. W X 1 1 h 1 ˆ ˆ Y W W , Alice 1 2 h X W 2 2 2 Bob g 1 Charles Z g n H W W , | Z 2 1 2 Eve Y = h 1 X 1 + h 2 X 2 + N Z = g 1 X 1 + g 2 X 2 + N ′ 88

  69. � � Scaling Based Alignment (SBA) – Introduction • Scaling at the transmitter: – Alice multiplies her channel input by the channel gain of Charles to Eve. – Charles multiplies his channel input by the channel gain of Alice to Eve. W g X 1 2 1 h 1 ˆ ˆ Y W W , Alice 1 2 g X W h 1 2 2 2 Bob g 1 Charles g Z n H W W , | Z 2 1 2 Eve Y = h 1 g 2 X 1 + h 2 g 1 X 2 + N Z = g 1 g 2 X 1 + g 2 g 1 X 2 + N ′ 89

  70. � � Scaling Based Alignment (SBA) – Introduction • Scaling at the transmitter: – Alice multiplies her channel input by the channel gain of Charles to Eve. – Charles multiplies his channel input by the channel gain of Alice to Eve. W g X 1 2 1 h 1 ˆ ˆ Y W W , Alice 1 2 g X W h 1 2 2 2 Bob g 1 Charles Z g n H W W , | Z 2 1 2 Eve Y = h 1 g 2 X 1 + h 2 g 1 X 2 + N Z = g 1 g 2 X 1 + g 2 g 1 X 2 + N ′ • Repetition: Both Alice and Charles repeat their symbols in two consecutive intervals. 90

  71. Scaling Based Alignment (SBA) – Analysis • Received signal at Bob (odd and even time indices): Y o = h 1 o g 2 o X 1 + h 2 o g 1 o X 2 + N o Y e = h 1 e g 2 e X 1 + h 2 e g 1 e X 2 + N e • Received signal at Eve (odd and even time indices): Z o = g 1 o g 2 o X 1 + g 2 o g 1 o X 2 + N ′ o Z e = g 1 e g 2 e X 1 + g 2 e g 1 e X 2 + N ′ e • At high SNR (imagine negligible noise): – Bob has two independent equations. – Eve has one equation. to solve for X 1 and X 2 . 91

  72. Scaling Based Alignment (SBA) – Analysis • Received signal at Bob (odd and even time indices): Y o = h 1 o g 2 o X 1 + h 2 o g 1 o X 2 Y e = h 1 e g 2 e X 1 + h 2 e g 1 e X 2 • Received signal at Eve (odd and even time indices): Z o = g 1 o g 2 o X 1 + g 2 o g 1 o X 2 Z e = g 1 e g 2 e X 1 + g 2 e g 1 e X 2 • At high SNR (imagine negligible noise): – Bob has two independent equations. – Eve has one equation. to solve for X 1 and X 2 . 92

  73. Scaling Based Alignment (SBA) – Achievable Rates • Following rates are achievable: � �� ( | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 ) P 1 � R 1 ≤ 1 � 1 +( | h 1 o g 2 o | 2 + | h 1 e g 2 e | 2 ) P 1 � − log 1 + 2 E h , g log 1 +( | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 ) P 2 � �� ( | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 ) P 2 � R 2 ≤ 1 � 1 +( | h 2 o g 1 o | 2 + | h 2 e g 1 e | 2 ) P 2 � − log 1 + 2 E h , g log 1 +( | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 ) P 1 � � R 1 + R 2 ≤ 1 � | h 1 o g 2 o | 2 + | h 1 e g 2 e | 2 � � | h 2 o g 1 o | 2 + | h 2 e g 1 e | 2 � 1 + P 1 + 2 E h , g log P 2 � + | h 1 e h 2 o g 1 o g 2 e − h 1 o h 2 e g 1 e g 2 o | 2 P 1 P 2 �� � | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 � � − log 1 + ( P 1 + P 2 ) where �� | g 2 o | 2 + | g 2 e | 2 � � ≤ ¯ E P 1 P 1 �� | g 1 o | 2 + | g 1 e | 2 � � ≤ ¯ E P 2 P 2 • P 1 and P 2 should be understood as P 1 ( h , g ) and P 2 ( h , g ) . 93

  74. Scaling Based Alignment (SBA) – Scaling with SNR and Secure DoF • Secrecy sum rate achievable by the SBA scheme: � � R s = 1 | h 1 o g 2 o | 2 + | h 1 e g 2 e | 2 � | h 2 o g 1 o | 2 + | h 2 e g 1 e | 2 � � � 1 + P 1 + 2 E h , g log P 2 � + | h 1 e h 2 o g 1 o g 2 e − h 1 o h 2 e g 1 e g 2 o | 2 P 1 P 2 �� � � | g 1 o g 2 o | 2 + | g 1 e g 2 e | 2 � − log 1 + ( P 1 + P 2 ) • A total of 1 2 secure DoF is achievable. 94

  75. Ergodic Secret Alignment (ESA) • Instead of repeating at two consecutive time instances, repeat at well-chosen time instances. • Akin to [Nazer-Gastpar-Jafar-Vishwanath, 2009] ergodic interference alignment. • At any given instant t 1 , received signal at Bob and Eve is,          Y t 1  h 1 h 2  X 1  N t 1  =  +   N ′ Z t 1 g 1 g 2 X 2 t 1 • Repeat at time instance t 2 , and the received signal at Bob and Eve is,         − h 2  Y t 2  h 1  X 1  N t 2  =  +   N ′ Z t 2 g 1 g 2 X 2 t 2 • This creates orthogonal MAC to Bob, but a scalar MAC to Eve. 95

  76. Ergodic Secret Alignment (ESA) – Achievable Rates • Following rates are achievable: � � �� 2 | g 1 | 2 P 1 R 1 ≤ 1 � � 1 + 2 | h 1 | 2 P 1 − log 1 + 2 E h , g log 1 + 2 | g 2 | 2 P 2 � � �� 2 | g 2 | 2 P 2 R 2 ≤ 1 � � 1 + 2 | h 2 | 2 P 2 − log 1 + 2 E h , g log 1 + 2 | g 1 | 2 P 1 � R 1 + R 2 ≤ 1 � � � � 1 + 2 | h 1 | 2 P 1 1 + 2 | h 2 | 2 P 2 + log 2 E h , g log �� � 1 + 2 ( | g 1 | 2 P 1 + | g 2 | 2 P 2 ) − log where E [ P 1 ] ≤ ¯ P 1 and E [ P 2 ] ≤ ¯ P 2 . • P 1 and P 2 should be understood as P 1 ( h , g ) and P 2 ( h , g ) . • Rates scale with SNR as in the SBA scheme: A total of 1 2 secure DoF is achievable. • Rates achieved here are larger than those with our first scheme. • Using cooperative jamming on the top of the ESA scheme achieves even larger secrecy rates. 96

  77. Fading Multiple Access Wiretap Channel – Achievable Rates 5 4.5 GS/CJ scheme SBA scheme 4 ESA scheme 3.5 Sum rate (bits/channel use) 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 Average SNR (dB) • Rates with Gaussian signalling (with or without cooperative jamming) do not scale. • Rates with scaling based alignment (SBA) and ergodic secret alignment (ESA) scale. • ESA performs better than SBA. 97

  78. � � Broadcast Channel with an External Eavesdropper • In cellular communications: base station to end-users channel can be eavesdropped. • This channel can be modelled as a broadcast channel with an external eavesdropper • In general, the problem is intractable for now. • Even without an eavesdropper, optimal transmission scheme is unknown. Y ˆ 1 W 1 Bob 1 X W W , 1 2 Y ˆ W 2 2 Alice Bob 2 Z n , | H W W Z 1 2 Eve 98

  79. � � Degraded Broadcast Channel with an External Eavesdropper-I • Observations of receivers and the eavesdropper satisfy a certain order. • This generalizes Wyner’s model to a multi-receiver (broadcast) setting. Y Y X Z 1 2 W W , n , | H W W Z 1 2 1 2 Eve Bob 1 Bob 2 Alice • Gaussian multi-receiver wiretap channel is an instance of this channel model. • Plays a significant role in the Gaussian MIMO multi-receiver wiretap channel. • The secrecy capacity region is obtained by Bagherikaram-Motahari-Khandani for K = 2 and by Ekrem-Ulukus for arbitrary K . 99

  80. Degraded Broadcast Channel with an External Eavesdropper-II • Capacity region for degraded broadcast channel: R 1 ≤ I ( X ; Y 1 | U ) R 2 ≤ I ( U ; Y 2 ) where U → X → Y 1 , Y 2 • Capacity region is achieved by superposition coding • Using superposition coding with stochastic encoding, the secrecy capacity region of the degraded broadcast channel with an external eavesdropper can be obtained: R 1 ≤ I ( X ; Y 1 | U ) − I ( X ; Z | U ) R 2 ≤ I ( U ; Y 2 ) − I ( U ; Z ) where U → X → Y 1 , Y 2 , Z 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend