inductively coupled plasmas one big presheath
play

INDUCTIVELY COUPLED PLASMAS: ONE BIG PRESHEATH? Carole Maurice 1 , - PowerPoint PPT Presentation

INDUCTIVELY COUPLED PLASMAS: ONE BIG PRESHEATH? Carole Maurice 1 , Jaap Feijen 1 , Mark Kushner 2 , Gerrit Kroesen 1 1 Eindhoven University of Technology 2 University of Illinois at Urbana-Champaign http://uigelz.ece.uiuc.edu/presentations.html


  1. INDUCTIVELY COUPLED PLASMAS: ONE BIG PRESHEATH? Carole Maurice 1 , Jaap Feijen 1 , Mark Kushner 2 , Gerrit Kroesen 1 1 Eindhoven University of Technology 2 University of Illinois at Urbana-Champaign http://uigelz.ece.uiuc.edu/presentations.html 14/10/2002 GEC 2002 Minneapolis 1

  2. AGENDA • Introduction • Reactor Geometry • Diagnostics • Experimental and Modeling: Ion Velocity Distributions • Conclusions 14/10/2002 GEC 2002 Minneapolis 2

  3. INTRODUCTION • In Capacitively Coupled Plasmas: distinctive regions – Glow: small E-field, ions nearly at rest – Pre-sheath: acceleration of ions to Bohm velocity – Sheath: space charge region, large E-field • How about Inductively Coupled Plasmas? 14/10/2002 GEC 2002 Minneapolis 3

  4. REACTOR • Pancake, spiral electrode • 30 cm diameter • 4 cm axial length • 13.56 MHz 14/10/2002 GEC 2002 Minneapolis 4

  5. REACTOR quartz plate electrode spiral antenna plasma 14/10/2002 GEC 2002 Minneapolis 5

  6. DIAGNOSTICS • Doppler shifted LIF for ion velocity in the plasma volume • Langmuir probe for plasma potential, ion density and electron density • Energy resolved mass spectrometry for ion energy distribution at electrode 14/10/2002 GEC 2002 Minneapolis 6

  7. DOPPLER SHIFTED LIF •Measure ion transport in plasma •Argon LIF scheme v ∆ = ⋅ •Moving ion → Doppler shift f i f L tr c 4p’ 2 F 7/2 laser 611.493 nm 490 263 GHz fluorescence 460.96 nm 3d’ 2 G 9/2 metastable 4s’ 2 D 5/2 14/10/2002 GEC 2002 Minneapolis 7

  8. Model: Hybrid Plasma Equipment Model (HPEM) • Monte Carlo Simulation for EEDs • Kinetically derived current in Maxwell’s Eq’s. • Ion & Neutral Continuity, Momentum, Energy • Ion Monte Carlo Simulation to obtain velocity distributions; energy/angle distributions to substrate. 14/10/2002 GEC 2002 Minneapolis 8

  9. LANGMUIR PROBE ELECTRON DENSITY 12 1.0x10 Setup2 • Electron density is mid 11 8.0x10 5 mTorr 10 11 cm -3 . 50 mTorr -3 ) Off axis maxima at ionic density (cm 11 6.0x10 higher pressures 11 4.0x10 denotes transition to collisional plasma. 11 2.0x10 400 W 0.0 0 2 4 6 8 10 12 14 16 radius (cm) 14/10/2002 GEC 2002 Minneapolis 9

  10. velocity (m/s) DOPLLER SHIFTED -6098-4878-3659-2439-1220 0 1220 2439 3659 4878 6098 -9 5x10 39.5 mm LIF 0 39 mm 38 mm 35 mm 30 mm • Ion velocity distribution is LIF signal (A) 25 mm a drifting Maxwellian. 20 mm 15 mm 5 mTorr, 400 W 10 mm 5 mm 2 mm signal x3 1 mm signal x3 -9 5x10 signal x3 0.5 mm 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 frequency shift (GHz) 14/10/2002 GEC 2002 Minneapolis 10

  11. AVERAGE ION VELOCITY AND PLASMA POTENTIAL 1 v i 4000 potential 0 • No low E-field region mean ion velocity (m/s) 2000 Ions are in continuous -1 potential (V) acceleration from metal electrode 0 quartz plate midplane to surfaces. -2 -2000 -3 5 mTorr, 400 W -4000 -4 40 30 20 10 0 distance to electrode (mm) 14/10/2002 GEC 2002 Minneapolis 11

  12. AVERAGE ION VELOCITY (MODEL) • Average ion velocity tracks the electric potential with nearly continuous acceleration from midplane. 400 W 14/10/2002 GEC 2002 Minneapolis 12

  13. ION ENERGY DISTRIBUTIONS (r=0) • Monotonic increase in IED with decreasing pressure reflects: • Increase in plasma potential Decrease in collisionality 400 W 14/10/2002 GEC 2002 Minneapolis 13

  14. ION ENERGY DISTRIBUTIONS (r=0) (MODEL) 14/10/2002 GEC 2002 Minneapolis 14

  15. ION ENERGY DISTRIBUTIONS (r=0) (MODEL) • Monotonic increase in IED with decreasing pressure is captured 400 W 14/10/2002 GEC 2002 Minneapolis 15

  16. 4 4 1x10 6x10 2 6x10 30 W 35 W 40 W 30 W input 35 W input 37 W input 4 5x10 2 5x10 4x10 4 2 4x10 Counts (cps) Counts (cps) Counts (cps) 4 3x10 2 3x10 4 2x10 2 2x10 4 1x10 1x10 2 0 0 0 0 10 20 0 10 20 0 10 20 Energy (eV) Energy (eV) Energy (eV) -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 6 3.2x10 6 6 2.4x 10 2 .2x10 6 3.0x10 6 6 2.8x10 45 W 6 50 W 2.2x 10 100 W 2 .0x10 45 W input 100 W input 50 W input 6 2.6x10 2.0x 10 6 4.0x 10 4 6 1 .8x10 2.4x10 6 1.8x 10 6 6 1 .6x10 6 2.2x10 6 1.6x 10 6 2.0x10 6 1 .4x10 Counts (cps) Counts (cps) Counts (cps) 6 6 1.8x10 1.4x 10 6 1 .2x10 1.6x10 6 6 1.2x 10 6 6 1.4x10 1 .0x10 6 4 1.0x 10 2.0x 10 6 1.2x10 5 8 .0x10 5 1.0x10 6 8.0x 10 5 5 6 .0x10 8.0x10 5 6.0x 10 5 6.0x10 5 4 .0x10 5 4.0x 10 5 4.0x10 5 2 .0x10 5 2.0x 10 5 2.0x10 0.0 0.0 0.0 0.0 0 10 20 0 10 20 0 10 20 Energy (eV) Energy (eV) Energy (eV) -4 - 2 0 2 4 6 8 10 12 14 16 18 20 22 24 0 10 20 0 10 20 6 300000 6 300 0 00 30000 2.0x10 2 .0x10 6 1.6x 10 6 6 200 W 300 W 1.8x10 1 .8x10 150 W 100 W inpu t 800 W input 200 W input 250000 250 0 00 25000 1.4x 10 6 1.6x10 6 1 .6x10 6 6 6 6 1.2x 10 1.4x10 1 .4x10 200000 200 0 00 20000 6 6 1.2x10 1 .2x10 6 1.0x 10 Counts (cps) Counts (cps) Counts (cps) 6 6 150000 150 0 00 15000 1.0x10 1 .0x10 5 8.0x 10 5 5 8.0x10 8 .0x10 5 6.0x 10 100000 100 0 00 10000 5 5 6.0x10 6 .0x10 5 4.0x 10 5 5 4.0x10 4 .0x10 50000 50 000 5000 5 2.0x 10 2.0x10 5 2 .0x10 5 0.0 0 0.0 0 0.0 0 0 10 20 0 10 20 0 10 20 Energy (eV) Energy (eV) Energy (eV) Black: Ar+ Argon, 50 mTorr, Power series, 0-25 eV 14/10/2002 GEC 2002 Minneapolis 16 Green: ArH+

  17. 0 10 20 30 0 10 20 30 0 10 20 30 6 3 2x10 4000 6x10 3 1x10 10 W 50 W 60 W 3 3500 1x10 46 W 7 W 37 W 3 absorbed : 7.2 W 5x10 absorb ed : 3 6.6 W 3 absorbed : 45.7 W 1x10 2x10 6 2x10 6 3000 3 1x10 + + + Ar Ar Ar 9x10 2 4x10 3 2500 2 8x10 Counts (cps) C ounts (cps) C ounts (cps) 2 7x10 6 2000 3 1x10 3x10 2 6x10 6 6 1x10 1x10 1500 2 5x10 3 2x10 2 4x10 1000 + 2 3x10 + ArH + ArH ArH 3 1x10 2 2x10 500 1x10 2 0 0 0 0 0 0 0 10 20 30 0 10 20 30 0 10 20 30 Energy (eV) Energy (eV) Energy (eV) 0 10 20 30 0 10 20 30 0 10 20 30 6 5 6 5 3x10 1.6x 10 2x10 2.4x 10 4 6.5x10 5 2.2x 10 80 W 100 W 130 W 6.0x10 4 5 1.4x 10 63 W 84 W 111 W 5 2.0x 10 absorbed : 63.2 W 4 absorb ed : 8 3.7 W absorbe d : 111.4 W 6 5.5x10 2x10 5 5 4 1.2x 10 1.8x 10 5.0x10 + + + Ar 4 6 Ar Ar 5 4.5x10 2x10 1.6x 10 5 1.0x 10 4 Counts (cps) 4.0x10 s (cps) s (cps) 5 1.4x 10 4 3.5x10 4 6 5 8.0x 10 1x10 1.2x 10 3.0x10 Count 4 Count 5 1.0x 10 1x10 6 4 4 2.5x10 6.0x 10 6 4 1x10 8.0x 10 4 2.0x10 4 4 4.0x 10 6.0x 10 + ArH 4 + + 1.5x10 ArH ArH 4 4.0x 10 4 1.0x10 4 2.0x 10 4 3 2.0x 10 5.0x10 0 0.0 0 0.0 0 0.0 0 10 20 30 0 10 20 30 0 10 20 30 Energy (eV) Energy (eV) Energy (eV) 0 10 20 30 0 10 20 30 0 10 20 30 6 5 2x10 1.6x10 5 4.0x 10 200 W 400 W 800 W 1.4x10 5 178 W 360 W 695 W 5 absorbed : 178 W absorbed : 360 W absorbed : 695 W 3.5x 10 6 6 2x10 2x10 5 1.2x10 5 3.0x 10 + + + Ar Ar 4 Ar 2.0x 10 5 1.0x10 5 Counts (cps) s (cps) s (cps) 2.5x 10 6 4 1x10 8.0x10 5 2.0x 10 Count Count 6 6 1x10 1x10 4 6.0x10 5 1.5x 10 4 4.0x10 5 1.0x 10 + + + ArH ArH ArH 2.0x10 4 4 5.0x 10 0 0.0 0 0.0 0 0.0 0 10 20 30 0 10 20 30 0 10 20 30 Energy (eV) Energy (eV) Energy (eV) Black: Ar+ 5 mTorr, argon plasma, power dependence 14/10/2002 GEC 2002 Minneapolis 17 Green: ArH+

  18. CONCLUSIONS • Acceleration starts from center of plasma, in both (!) axial directions. • Ions gradually accelerate to Bohm speed. • There is no real glow, just one big, symmetric presheath. 14/10/2002 GEC 2002 Minneapolis 18

  19. Acknowledgements • Netherlands Technology Foundation (STW) • Netherlands Organization for Scientific Research (NWO) • Center for Plasma Physics and Radiation Technology (CPS) • National Science Foundation (NSF) • Semiconductor Research Corp. (SRC) 14/10/2002 GEC 2002 Minneapolis 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend