induced matchings and the a lge b r a i c st ab ilit y of
play

Induced matchings and the a lge b r a i c st ab ilit y of persisten c - PowerPoint PPT Presentation

Induced matchings and the a lge b r a i c st ab ilit y of persisten c e ba r c odes U lri c h Bau er TUM A pr 7, 20 15 GETCO 20 15, Aa l b org J oint w ork w ith M i c h a el L esni c k ( IMA ) 1 / 2 8 2 / 2 8 2 / 2 8 2 / 2 8 2 / 2 8 2 / 2 8 2 / 2


  1. Stab ilit y of persisten c e ba r c odes for f u n c tions T heorem ( C ohen- S teiner, E dels b r u nner, Ha rer 200 5) If two functions f , g ∶ K → R have distance ∥ f − g ∥ ∞ ≤ δ then there exists a δ -matching of their barcodes. 2 δ δ ∣ B : b ije c tion of s u b sets A ′ ⊆ A , B ′ ⊆ B • matching A → • δ -matching of barcodes : • m a t c hed inter v a ls h a v e endpoints w ithin dist a n c e ≤ δ • u nm a t c hed inter v a ls h a v e length ≤ 2 δ 9 / 2 8

  2. Stab ilit y for f u n c tions in the b ig pi c t u re Da t a point c lo u d dist a n c e G eometr y f u n c tion s ub le v el sets T opolog y topologi ca l sp ac es homolog y A lge b r a v e c tor sp ac es ba r c ode C om b in a tori c s inter va ls 1 0 / 2 8

  3. Stab ilit y for f u n c tions in the b ig pi c t u re Da t a point c lo u d dist a n c e G eometr y f u n c tion s ub le v el sets T opolog y topologi ca l sp ac es homolog y A lge b r a v e c tor sp ac es ba r c ode C om b in a tori c s inter va ls 1 0 / 2 8

  4. Stab ilit y for f u n c tions in the b ig pi c t u re Da t a point c lo u d dist a n c e G eometr y f u n c tion s ub le v el sets T opolog y topologi ca l sp ac es homolog y A lge b r a v e c tor sp ac es ba r c ode C om b in a tori c s inter va ls 1 0 / 2 8

  5. Stab ilit y for f u n c tions in the b ig pi c t u re Da t a point c lo u d dist a n c e G eometr y f u n c tion s ub le v el sets T opolog y topologi ca l sp ac es homolog y A lge b r a v e c tor sp ac es ba r c ode C om b in a tori c s inter va ls 1 0 / 2 8

  6. Inter le av ings of s ub le v el sets L et • F t = f − 1 (−∞ , t ] , • G t = g − 1 (−∞ , t ] . 11 / 2 8

  7. Inter le av ings of s ub le v el sets L et • F t = f − 1 (−∞ , t ] , • G t = g − 1 (−∞ , t ] . I f ∥ f − g ∥ ∞ ≤ δ then F t ⊆ G t + δ a nd G t ⊆ F t + δ . 11 / 2 8

  8. Inter le av ings of s ub le v el sets L et • F t = f − 1 (−∞ , t ] , • G t = g − 1 (−∞ , t ] . I f ∥ f − g ∥ ∞ ≤ δ then F t ⊆ G t + δ a nd G t ⊆ F t + δ . S o the s ub le v el sets a re δ -int erle av ed: F t F t + 2 δ G t + δ G t + 3 δ 11 / 2 8

  9. Inter le av ings of s ub le v el sets L et • F t = f − 1 (−∞ , t ] , • G t = g − 1 (−∞ , t ] . I f ∥ f − g ∥ ∞ ≤ δ then F t ⊆ G t + δ a nd G t ⊆ F t + δ . S o the s ub le v el sets a re δ -int erle av ed: H ∗ ( F t ) H ∗ ( F t + 2 δ ) H ∗ ( G t + δ ) H ∗ ( G t + 3 δ ) H omolog y is a f u n c tor: homolog y gro u ps a re interle av ed too. 11 / 2 8

  10. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : 1 2 / 2 8

  11. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R 1 2 / 2 8

  12. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) 1 2 / 2 8

  13. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) • a line a r m a p M s → M t for e ac h s ≤ t ( tr a nsition m a ps ) 1 2 / 2 8

  14. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) • a line a r m a p M s → M t for e ac h s ≤ t ( tr a nsition m a ps ) • respe c ting identit y : ( M t → M t ) = id M t a nd c omposition: ( M s → M t ) ○ ( M r → M s ) = ( M r → M t ) 1 2 / 2 8

  15. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) • a line a r m a p M s → M t for e ac h s ≤ t ( tr a nsition m a ps ) • respe c ting identit y : ( M t → M t ) = id M t a nd c omposition: ( M s → M t ) ○ ( M r → M s ) = ( M r → M t ) A morphism f ∶ M → N is a n a t u r a l tr a nsform a tion : 1 2 / 2 8

  16. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) • a line a r m a p M s → M t for e ac h s ≤ t ( tr a nsition m a ps ) • respe c ting identit y : ( M t → M t ) = id M t a nd c omposition: ( M s → M t ) ○ ( M r → M s ) = ( M r → M t ) A morphism f ∶ M → N is a n a t u r a l tr a nsform a tion : • a line a r m a p f t ∶ M t → N t for e ac h t ∈ R 1 2 / 2 8

  17. Persistence modu les A persistence modu le M is a di a gr a m (f u n c tor) R → Vect : • a v e c tor sp ac e M t for e ac h t ∈ R (in this t a lk: dim M t < ∞ ) • a line a r m a p M s → M t for e ac h s ≤ t ( tr a nsition m a ps ) • respe c ting identit y : ( M t → M t ) = id M t a nd c omposition: ( M s → M t ) ○ ( M r → M s ) = ( M r → M t ) A morphism f ∶ M → N is a n a t u r a l tr a nsform a tion : • a line a r m a p f t ∶ M t → N t for e ac h t ∈ R • morphism a nd tr a nsition m a ps c omm u te: M s M t f s f t N s N t 1 2 / 2 8

  18. Interva l P ersisten c e M od u les L et K b e a field. F or a n a r b itr a r y inter va l I ⊆ R , define the interva l persisten c e mod u le C ( I ) by ⎧ ⎪ ⎪ if t ∈ I , K C ( I ) t = ⎨ ⎪ ⎪ 0 other w ise ; ⎩ 1 3 / 2 8

  19. Interva l P ersisten c e M od u les L et K b e a field. F or a n a r b itr a r y inter va l I ⊆ R , define the interva l persisten c e mod u le C ( I ) by ⎧ ⎪ ⎪ if t ∈ I , K C ( I ) t = ⎨ ⎪ ⎪ 0 other w ise ; ⎩ ⎧ ⎪ ⎪ id K if s , t ∈ I , C ( I ) s → C ( I ) t = ⎨ ⎪ ⎪ 0 other w ise . ⎩ 1 3 / 2 8

  20. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . 14 / 2 8

  21. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . T hen M is inter v a l-de c ompos ab le: 14 / 2 8

  22. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . T hen M is inter v a l-de c ompos ab le: there e x ists a u niq u e c olle c tion of inter va ls B ( M ) 14 / 2 8

  23. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . T hen M is inter v a l-de c ompos ab le: there e x ists a u niq u e c olle c tion of inter va ls B ( M ) s uc h th a t M ≅ ⊕ C ( I ) . I ∈ B ( M ) 14 / 2 8

  24. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . T hen M is inter v a l-de c ompos ab le: there e x ists a u niq u e c olle c tion of inter va ls B ( M ) s uc h th a t M ≅ ⊕ C ( I ) . I ∈ B ( M ) B ( M ) is ca lled the ba r c ode of M . 14 / 2 8

  25. The structure of persistence modu les T heorem ( C r aw le y - B oe w e y 20 1 2 ) Let M be a persistence modu le w ith dim M t < ∞ for a ll t . T hen M is inter v a l-de c ompos ab le: there e x ists a u niq u e c olle c tion of inter va ls B ( M ) s uc h th a t M ≅ ⊕ C ( I ) . I ∈ B ( M ) B ( M ) is ca lled the ba r c ode of M . • M oti v a tes u se of homolog y w ith field c oeffi c ients 14 / 2 8

  26. Inter le av ings of persisten c e mod u les D efinition Tw o persisten c e mod u les M a nd N a re δ -int erle av ed 15 / 2 8

  27. Inter le av ings of persisten c e mod u les D efinition Tw o persisten c e mod u les M a nd N a re δ -int erle av ed if there a re morphisms f ∶ M → N ( δ ) , g ∶ N → M ( δ ) 15 / 2 8

  28. Inter le av ings of persisten c e mod u les D efinition Tw o persisten c e mod u les M a nd N a re δ -int erle av ed if there a re morphisms f ∶ M → N ( δ ) , g ∶ N → M ( δ ) s uc h th a t this di a gr a ms c omm u tes for a ll t : M t M t + 2 δ f t f t + 2 δ g t + δ N t + δ N t + 3 δ 15 / 2 8

  29. Inter le av ings of persisten c e mod u les D efinition Tw o persisten c e mod u les M a nd N a re δ -int erle av ed if there a re morphisms f ∶ M → N ( δ ) , g ∶ N → M ( δ ) s uc h th a t this di a gr a ms c omm u tes for a ll t : M t M t + 2 δ f t f t + 2 δ g t + δ N t + δ N t + 3 δ • define M ( δ ) by M ( δ ) t = M t + δ 15 / 2 8

  30. Inter le av ings of persisten c e mod u les D efinition Tw o persisten c e mod u les M a nd N a re δ -int erle av ed if there a re morphisms f ∶ M → N ( δ ) , g ∶ N → M ( δ ) s uc h th a t this di a gr a ms c omm u tes for a ll t : M t M t + 2 δ f t f t + 2 δ g t + δ N t + δ N t + 3 δ • define M ( δ ) by M ( δ ) t = M t + δ B ( M ) B ( M (δ)) (shift ba r c ode to the left by δ ) δ 15 / 2 8

  31. A lge b r a i c st ab ilit y of persisten c e ba r c odes T heorem ( C h aza l et a l. 200 9, 20 1 2 ) If two persistence modu les a re δ -interle av ed, then there e x ists a δ -m a t c hing of their ba r c odes. 16 / 2 8

  32. A lge b r a i c st ab ilit y of persisten c e ba r c odes T heorem ( C h aza l et a l. 200 9, 20 1 2 ) If two persistence modu les a re δ -interle av ed, then there e x ists a δ -m a t c hing of their ba r c odes. 2 δ δ 16 / 2 8

  33. A lge b r a i c st ab ilit y of persisten c e ba r c odes T heorem ( C h aza l et a l. 200 9, 20 1 2 ) If two persistence modu les a re δ -interle av ed, then there e x ists a δ -m a t c hing of their ba r c odes. 2 δ δ • c on v erse st a tement a lso holds (isometr y theorem) 16 / 2 8

  34. A lge b r a i c st ab ilit y of persisten c e ba r c odes T heorem ( C h aza l et a l. 200 9, 20 1 2 ) If two persistence modu les a re δ -interle av ed, then there e x ists a δ -m a t c hing of their ba r c odes. 2 δ δ • c on v erse st a tement a lso holds (isometr y theorem) • indire c t proof, 8 0 p a ge p a per ( C h a z a l et a l. 20 1 2 ) 16 / 2 8

  35. Our approach Our proof takes a different approach: • direct proof (no inter pol a tion, m a t c hing immedi a tel y from interle av ing) 17 / 2 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend