indivisible goods
play

INDIVISIBLE GOODS Set of goods Each good is indivisible Players - PowerPoint PPT Presentation

T RUTH J USTICE A LGOS Fair Division V: Indivisible Goods Teachers: Ariel Procaccia (this time) and Alex Psomas INDIVISIBLE GOODS Set of goods Each good is indivisible Players = 1, , have valuations


  1. T RUTH J USTICE A LGOS Fair Division V: Indivisible Goods Teachers: Ariel Procaccia (this time) and Alex Psomas

  2. INDIVISIBLE GOODS โ€ข Set ๐ป of ๐‘› goods ๐ป โ€ข Each good is indivisible โ€ข Players ๐‘‚ = 1, โ€ฆ , ๐‘œ have valuations ๐‘Š ๐‘— for bundles of goods โ€ข Valuations are additive if for all ๐‘‡ โŠ† ๐ป and ๐‘— โˆˆ ๐‘— ๐‘‡ = ฯƒ ๐‘•โˆˆ๐ป ๐‘Š ๐‘‚ , ๐‘Š ๐‘— ๐‘• โ€ข Assume additivity unless noted otherwise โ€ข An allocation is a partition of the goods, denoted ๐‘ฉ = (๐ต 1 , โ€ฆ , ๐ต ๐‘œ ) โ€ข Envy-freeness and proportionality are infeasible!

  3. MAXIMIN SHARE GUARANTEE Total: Total: Total: $50 $30 $20 $3 $2 $50 $30 $5 $5 $5

  4. MAXIMIN SHARE GUARANTEE Total: Total: Total: $50 $30 $20 $3 $2 $50 $30 $5 $5 $5 $3 $2 $5 $40 $10 $20 $20 Total: Total: Total: $30 $30 $40

  5. MAXIMIN SHARE GUARANTEE โ€ข Maximin share (MMS) guarantee [Budish 2011] of player ๐‘— : ๐‘Œ 1 ,โ€ฆ,๐‘Œ ๐‘œ min max ๐‘Š ๐‘— (๐‘Œ ๐‘˜ ) ๐‘˜ โ€ข An MMS allocation is such that ๐‘Š ๐‘— (๐ต ๐‘— ) is at least ๐‘—โ€™s MMS guarantee for all ๐‘— โˆˆ ๐‘‚ โ€ข For ๐‘œ = 2 an MMS allocation always exists โ€ข Theorem [Kurokawa et al. 2018]: โˆ€๐‘œ โ‰ฅ 3 there exist additive valuation functions that do not admit an MMS allocation

  6. COUNTEREXAMPLE FOR ๐‘œ = 3 17 25 12 1 17 25 12 1 17 25 12 1 17 17 25 25 12 12 1 1 2 22 3 28 2 22 3 28 2 22 3 28 2 22 3 28 2 22 3 28 11 0 21 23 11 0 21 23 11 0 21 11 0 21 23 11 0 21 23 23

  7. COUNTEREXAMPLE FOR ๐‘œ = 3 1 1 1 1 17 25 12 1 ร— 10 6 ร— 10 3 + + 1 1 1 1 2 22 3 28 1 1 1 1 11 0 21 23 3 -1 -1 -1 3 -1 0 0 3 0 -1 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 Player 1 Player 2 Player 3

  8. APPROXIMATE ENVY-FREENESS โ€ข Assume general monotonic valuations, i.e., for all ๐‘‡ โŠ† ๐‘ˆ โŠ† ๐ป, ๐‘Š ๐‘— ๐‘‡ โ‰ค ๐‘Š ๐‘— (๐‘ˆ) โ€ข An allocation ๐ต 1 , โ€ฆ , ๐ต ๐‘œ is envy free up to one good (EF1) if and only if โˆ€๐‘—, ๐‘˜ โˆˆ ๐‘‚, โˆƒ๐‘• โˆˆ ๐ต ๐‘˜ s.t. ๐‘ค ๐‘— ๐ต ๐‘— โ‰ฅ ๐‘ค ๐‘— ๐ต ๐‘˜ \{๐‘•} โ€ข Theorem [Lipton et al. 2004]: An EF1 allocation exists and can be found in polynomial time

  9. PROOF OF THEOREM โ€ข A partial allocation is an allocation of a subset of the goods โ€ข Given a partial allocation ๐‘ฉ , we have an edge (๐‘—, ๐‘˜) in its envy graph if ๐‘— envies ๐‘˜ โ€ข Lemma: An EF1 partial allocation ๐‘ฉ can be transformed in polynomial time into an EF1 partial allocation ๐‘ช of the same goods with an acyclic envy graph

  10. PROOF OF LEMMA โ€ข If ๐ป has a cycle ๐ท , shift allocations along ๐ท to obtain ๐‘‡ 4 ๐‘‡ 1 ๐‘ฉโ€ฒ ; clearly EF1 is maintained โ€ข #edges in envy graph of ๐‘ฉโ€ฒ decreased: ๐‘‡ 3 ๐‘‡ 2 โ—ฆ Same edges between ๐‘‚ โˆ– ๐ท โ—ฆ Edges from ๐‘‚ โˆ– ๐ท to ๐ท shifted ๐‘‡ 4 ๐‘‡ 2 โ—ฆ Edges from ๐ท to ๐‘‚ โˆ– ๐ท can only decrease โ—ฆ Edges inside C decreased ๐‘‡ 1 ๐‘‡ 3 โ€ข Iteratively remove cycles โˆŽ

  11. PROOF OF THEOREM โ€ข Maintain EF1 and acyclic envy graph โ€ข In round 1, allocate good ๐‘• 1 to arbitrary agent โ€ข ๐‘• 1 , โ€ฆ , ๐‘• ๐‘™โˆ’1 are allocated in acyclic ๐‘ฉ โ€ข Derive ๐‘ช by allocating ๐‘• ๐‘™ to source ๐‘— โ€ข ๐‘Š ๐‘˜ ๐ถ ๐‘˜ = ๐‘Š ๐‘˜ ๐ต ๐‘˜ โ‰ฅ ๐‘Š ๐‘˜ ๐ต ๐‘— = ๐‘Š ๐‘˜ ๐ถ ๐‘— โˆ– ๐‘• ๐‘™ โ€ข Use lemma to eliminate cycles โˆŽ

  12. ROUND ROBIN โ€ข Let us return to additive valuations โ€ข Now proving the existence of an EF1 allocation is trivial โ€ข A round-robin allocation is EF1: Phase 1 Phase 2

  13. IMPLICATIONS FOR CAKE CUTTING โ€ข In cake cutting, we can define an allocation to be ๐œ— -envy free if for all ๐‘—, ๐‘˜ โˆˆ ๐‘‚, ๐‘Š ๐‘— ๐ต ๐‘— โ‰ฅ ๐‘Š ๐‘— ๐ต ๐‘˜ โˆ’ ๐œ— โ€ข The foregoing result has interesting implications for cake cutting! Poll 1 ? Complexity of ๐œ— -EF in the RW model? 1 ๐‘œ โ€ข ๐‘ƒ โ€ข ๐‘ƒ ๐œ— 2 ๐œ— ๐‘œ 2 1 โ€ข ๐‘ƒ โ€ข ๐‘ƒ ๐œ— 2 ๐œ—

  14. MAXIMUM NASH WELFARE โ€ข An allocation ๐‘ฉ is Pareto efficient if there is no allocation ๐‘ฉโ€ฒ such that โ€ฒ โ‰ฅ ๐‘Š ๐‘Š ๐‘— ๐ต ๐‘— ๐‘— ๐ต ๐‘— for all ๐‘— โˆˆ ๐‘‚ , and โ€ฒ > ๐‘Š ๐‘Š ๐‘˜ ๐ต ๐‘˜ ๐‘˜ ๐ต ๐‘˜ for some ๐‘˜ โˆˆ ๐‘‚ โ€ข Round Robin is not efficient โ€ข Is there a rule that guarantees both EF1 and efficiency?

  15. MAXIMUM NASH WELFARE โ€ข The Nash welfare of an allocation ๐‘ฉ is the product of values NW ๐‘ฉ = เท‘ ๐‘Š ๐‘— (๐ต ๐‘— ) ๐‘—โˆˆ๐‘‚ โ€ข The maximum Nash welfare (MNW) solution chooses an allocation that maximizes the Nash welfare โ€ข For ease of exposition we ignore the case of NW ๐‘ฉ = 0 for all ๐‘ฉ โ€ข Theorem [Caragiannis et al. 2016]: Assuming additive valuations, the MNW solution is EF1 and efficient

  16. PROOF OF THEOREM โ€ข Efficiency is obvious, so we focus on EF1 โ€ข Assume for contradiction that ๐‘— envies ๐‘˜ by more than one good โ€ข Let ๐‘• โ‹† โˆˆ argmin ๐‘•โˆˆ๐ต ๐‘˜ ,๐‘Š ๐‘— ๐‘• >0 ๐‘Š ๐‘˜ (๐‘•)/๐‘Š ๐‘— (๐‘•) โ€ข Move ๐‘• โ‹† from ๐‘˜ to ๐‘— to obtain ๐‘ฉโ€ฒ , we will show that NW ๐‘ฉ โ€ฒ > NW(๐‘ฉ) โ€ฒ ) for all ๐‘™ โ‰  ๐‘—, ๐‘˜ , โ€ข It holds that ๐‘Š ๐‘™ ๐ต ๐‘™ = ๐‘Š ๐‘™ (๐ต ๐‘™ โ€ฒ = ๐‘Š ๐‘— ๐‘• โ‹† , and ๐‘Š ๐‘— ๐ต ๐‘— ๐‘— ๐ต ๐‘— + ๐‘Š โ€ฒ = ๐‘Š ๐‘˜ ๐‘• โ‹† ๐‘Š ๐‘˜ ๐ต ๐‘˜ ๐‘˜ ๐ต ๐‘˜ โˆ’ ๐‘Š

  17. PROOF OF THEOREM โ€ข NW ๐ต โ€ฒ ๐‘Š ๐‘˜ ๐‘• โ‹† ๐‘Š ๐‘— ๐‘• โ‹† NW ๐ต > 1 โ‡” 1 โˆ’ 1 + > 1 โ‡” ๐‘Š ๐‘˜ ๐ต ๐‘˜ ๐‘Š ๐‘— ๐ต ๐‘— ๐‘Š ๐‘˜ ๐‘• โ‹† ๐‘— ๐‘• โ‹† ๐‘Š ๐‘— ๐ต ๐‘— + ๐‘Š < ๐‘Š ๐‘˜ ๐ต ๐‘˜ ๐‘Š ๐‘— ๐‘• โ‹† โ€ข Due to our choice of ๐‘• โ‹† , ฯƒ ๐‘•โˆˆ๐ต ๐‘˜ ๐‘Š ๐‘˜ ๐‘• โ‹† ๐‘˜ ๐‘• ๐‘Š ๐‘— ๐‘• = ๐‘Š ๐‘˜ ๐ต ๐‘˜ ๐‘— ๐‘• โ‹† โ‰ค ฯƒ ๐‘•โˆˆ๐ต ๐‘˜ ๐‘Š ๐‘Š ๐‘Š ๐‘— ๐ต ๐‘˜ โ€ข Due to EF1 violation, we have ๐‘— ๐‘• โ‹† < ๐‘Š ๐‘Š ๐‘— ๐ต ๐‘— + ๐‘Š ๐‘— ๐ต ๐‘˜ โ€ข Multiply the last two inequalities to get the first โˆŽ

  18. TRACTABILITY OF MNW 30 25 20 Time (s) 15 10 5 0 5 10 15 20 25 30 35 40 45 50 Number of players [Caragiannis et al., 2016]

  19. INTERFACE

  20. AN OPEN PROBLEM โ€ข An allocation ๐ต 1 , โ€ฆ , ๐ต ๐‘œ is envy free up to any good (EFX) if and only if โˆ€๐‘—, ๐‘˜ โˆˆ ๐‘‚, โˆ€๐‘• โˆˆ ๐ต ๐‘˜ , ๐‘ค ๐‘— ๐ต ๐‘— โ‰ฅ ๐‘ค ๐‘— ๐ต ๐‘˜ \{๐‘•} โ€ข Strictly stronger than EF1, strictly weaker than EF โ€ข An EFX allocation exists for two players with monotonic valuations โ€ข Existence is an open problem for ๐‘œ โ‰ฅ 3 players with additive valuations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend