improved lower bounds for coded caching
play

Improved Lower Bounds for Coded Caching Aditya Ramamoorthy Iowa - PowerPoint PPT Presentation

Improved Lower Bounds for Coded Caching Aditya Ramamoorthy Iowa State University Joint work with Hooshang Ghasemi DIMACS Workshop on Network Coding: the Next 15 Years December 17, 2015 Aditya Ramamoorthy Improved Lower Bounds for Coded


  1. Improved Lower Bounds for Coded Caching Aditya Ramamoorthy Iowa State University Joint work with Hooshang Ghasemi DIMACS Workshop on Network Coding: the Next 15 Years December 17, 2015 Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 1 / 35

  2. Conventional Content Delivery with Caching Server Shared link . . . User 1 User 2 User K-1 User K Cache 1 Cache 2 Cache K-1 Cache K Mechanism for reducing transmission rates from server to clients. ◮ Conventional approach: clients cache portions of popular content. Coding in the cache and coded transmission from server are typically not considered. Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 2 / 35

  3. Coded Caching Formulation [Maddah-Ali & Niesen ’13] W 1 . . Server contains N files . each of size F bits. W N K users each with a Shared link cache of size MF bits. The i -th user requests . . . file d i ∈ { 1 , . . . , N } . User 1 User 2 User K-1 User K M Cache 1 Cache 2 Cache K-1 Cache K Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 3 / 35

  4. Coded Caching Formulation [Maddah-Ali & Niesen ’13] W 1 Placement phase : The 1 content of the caches are . . . populated, does not depend W N on users actual requests. Shared link Delivery phase : the server 2 transmits a signal of rate RF bits over the shared link . . . User 1 User 2 User K-1 User K so that each user’s request Cache 1 Cache 2 Cache K-1 Cache K is satisfied. Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 4 / 35

  5. Coded Caching Formulation [Maddah-Ali & Niesen ’13] N files { W n } N n = 1 , W 1 . i -th user requests the file W d i , . . Cache content: Z i , W N Delivery phase signal: X d 1 ,..., d K X d 1 , d 2 ,..., d K , Decoding file for i -th user: ˆ W d 1 ,..., d K ; i , . . . User 1 User 2 User K-1 User K Probability of error: M Z 1 Z 2 Z K − 1 Z K max d 1 ,..., d K max i P ( ˆ W d 1 ,..., d K ; i � = W d i ) . Achievable Pair ( M , R ) : The pair is said to be achievable if for any ǫ > 0 there exist a file size F large enough and a ( M , R ) caching scheme with probability of at most ǫ . Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 5 / 35

  6. Coded Caching Formulation [Maddah-Ali & Niesen ’13] N files { W n } N n = 1 , W 1 i -th user requests the file W d i , . . . Cache content: Z i , W N Delivery phase signal: X d 1 ,..., d K X d 1 , d 2 ,..., d K , Decoding file for i -th user: ˆ W d 1 ,..., d K ; i , . . . User 1 User 2 User K-1 User K Probability of error: M Z K − 1 Z 1 Z 2 Z K max d 1 ,..., d K max i P ( ˆ W d 1 ,..., d K ; i � = W d i ) . Memory-rate tradeoff R ⋆ ( M ) = inf { R : ( M , R ) is achievable } . Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 5 / 35

  7. Achievable rates N = 1000 , K = 100 100 Coded Caching Rate 90 Conventional Caching Rate 80 70 Rate(R) 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Cache Size(M) � � � � 1 − M 1 + KM / N , N 1 R C ( M ) = K · min , N K Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 6 / 35

  8. Achievable rates N = 1000 , K = 100 100 Coded Caching Rate 90 Conventional Caching Rate 80 70 Rate(R) 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 Cache Size(M) � � � � 1 − M 1 + KM / N , N 1 R C ( M ) = K · min , N K However, tight lower bounds on R C ( M ) are not known at this point. Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 6 / 35

  9. Related Work Cutset bound [Maddah-Ali & Niesen ’13]. Show that R C ( M ) / R star ( M ) ≤ 12 (multiplicative gap). Parallel works ◮ Improved bounds using Han’s inequality [Sengupta, Tandon, Clancy ’15]. Show a multiplicative gap of 8. ◮ Another approach (can be considered a special case of our work) by [Ajaykrishnan et al. 15]. ◮ Computational approach of [Tian ’15] (Arxiv preprint) for the specific case of N = K = 3. Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 7 / 35

  10. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  11. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  12. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  13. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  14. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) Writing mutual information another way ... I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  15. An Example: N = K = 3 and M = 1. 2 R ⋆ F + 2 MF ≥ H ( Z 1 ) + H ( X 1 , 2 , 3 ) + H ( Z 2 ) + H ( X 3 , 1 , 2 ) ≥ H ( Z 1 , X 1 , 2 , 3 ) + H ( Z 2 , X 3 , 1 , 2 ) ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) Writing mutual information another way ... I ( W 1 ; Z 1 , X 1 , 2 , 3 ) = H ( W 1 ) − H ( W 1 | Z 1 , X 1 , 2 , 3 ) ≥ F ( 1 − ǫ ) Since W 1 can be recovered from Z 1 and X 1 , 2 , 3 with ǫ -error. Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 8 / 35

  16. An Example: N = K = 3 and M = 1. ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) , = 2 F ( 1 − ǫ ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) ≥ 2 F ( 1 − ǫ ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) = 2 F ( 1 − ǫ ) + I ( W 2 , W 3 ; Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 , W 2 , W 3 ) ≥ 2 F ( 1 − ǫ ) + 2 F ( 1 − ǫ ) = 4 F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 9 / 35

  17. An Example: N = K = 3 and M = 1. ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) , = 2 F ( 1 − ǫ ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) ≥ 2 F ( 1 − ǫ ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) = 2 F ( 1 − ǫ ) + I ( W 2 , W 3 ; Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 , W 2 , W 3 ) ≥ 2 F ( 1 − ǫ ) + 2 F ( 1 − ǫ ) = 4 F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 9 / 35

  18. An Example: N = K = 3 and M = 1. ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) , = 2 F ( 1 − ǫ ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) ≥ 2 F ( 1 − ǫ ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) = 2 F ( 1 − ǫ ) + I ( W 2 , W 3 ; Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 , W 2 , W 3 ) ≥ 2 F ( 1 − ǫ ) + 2 F ( 1 − ǫ ) = 4 F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 9 / 35

  19. An Example: N = K = 3 and M = 1. ≥ I ( W 1 ; Z 1 , X 1 , 2 , 3 ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + I ( W 1 ; Z 2 , X 3 , 1 , 2 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) , = 2 F ( 1 − ǫ ) + H ( Z 1 , X 1 , 2 , 3 | W 1 ) + H ( Z 2 , X 3 , 1 , 2 | W 1 ) ≥ 2 F ( 1 − ǫ ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) = 2 F ( 1 − ǫ ) + I ( W 2 , W 3 ; Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 ) + H ( Z 1 , Z 2 , X 1 , 2 , 3 , X 3 , 1 , 2 | W 1 , W 2 , W 3 ) ≥ 2 F ( 1 − ǫ ) + 2 F ( 1 − ǫ ) = 4 F ( 1 − ǫ ) Aditya Ramamoorthy Improved Lower Bounds for Coded Caching 9 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend