improved cryptanalysis of hfev via projection
play

Improved Cryptanalysis of HFEv- via Projection Jintai Ding, Ray - PowerPoint PPT Presentation

Improved Cryptanalysis of HFEv- via Projection Jintai Ding, Ray Perlner, Albrecht Petzoldt, Daniel Smith-Tone PQ Crypto 2018 Fort Lauderdale, Florida 04/10/2018 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 1 / 25 Outline


  1. Improved Cryptanalysis of HFEv- via Projection Jintai Ding, Ray Perlner, Albrecht Petzoldt, Daniel Smith-Tone PQ Crypto 2018 Fort Lauderdale, Florida 04/10/2018 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 1 / 25

  2. Outline Multivariate Cryptography 1 The HFEv- Signature Scheme 2 Notations and Previous Work 3 Our three new Attacks against HFEv- 4 Conclusion 5 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 2 / 25

  3. Multivariate Cryptography n n n � � � p (1) p (1) · x i + p (1) p (1) ( x 1 , . . . , x n ) = · x i x j + ij i 0 i =1 j = i i =1 n n n � � � p (2) p (2) · x i + p (2) p (2) ( x 1 , . . . , x n ) = · x i x j + ij i 0 i =1 j = i i =1 . . . n n n � � � p ( m ) p ( m ) · x i + p ( m ) p ( m ) ( x 1 , . . . , x n ) = · x i x j + ij i 0 i =1 j = i i =1 The security of multivariate schemes is based on the Problem MQ : Given m multivariate quadratic polynomials p (1) ( x ) , . . . , p ( m ) ( x ), find a vector ¯ x = (¯ x 1 , . . . , ¯ x n ) such that p (1) (¯ x ) = . . . = p ( m ) (¯ x ) = 0. A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 3 / 25

  4. Construction Decryption / Signature Generation T ✲ x ∈ F m F ✲ y ∈ F n U ✲ z ∈ F n w ∈ F m ✻ P Encryption / Signature Verification Easily invertible quadratic map F : F n → F m Two invertible linear maps T : F m → F m and U : F n → F n Public key : P = T ◦ F ◦ U supposed to look like a random system Private key : T , F , U allows to invert the public key A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 4 / 25

  5. Big Field Signature Schemes Signature Generation F − 1 X ∈ E Y ∈ E ✲ ✻ Φ − 1 Φ ❄ ¯ T − 1 F − 1 U − 1 ✲ x ∈ F n ✲ y ∈ F n ✲ z ∈ F n w ∈ F n ✻ P Signature Verification A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 5 / 25

  6. HFEv − - Key Generation BigField + Minus Equations + Vinegar Variation central map F : F v × E → E , q i + q j ≤ D q i ≤ D � � α ij X q i + q j + β i ( v 1 , . . . , v v ) · X q i + γ ( v 1 , . . . , v v ) F ( X ) = 0 ≤ i ≤ j i =0 F = Φ − 1 ◦ F ◦ Φ quadratic ⇒ ¯ linear maps T : F n → F n − a and U : F n + v → F n + v of maximal rank F ◦ U : F n + v → F n − a public key : P = T ◦ ¯ private key : T , F , U A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 6 / 25

  7. Signature Generation Given: message (hash value) w ∈ F n − a 1 Compute x = T − 1 ( w ) ∈ F n and X = Φ( x ) ∈ E 2 Choose random values for the vinegar variables v 1 , . . . , v v Solve F v 1 ,..., v v ( Y ) = X over E via Berlekamps algorithm 3 Compute y = Φ − 1 ( Y ) ∈ F n and z = U − 1 ( y || v 1 || . . . || v v ) Signature: z ∈ F n + v . A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 7 / 25

  8. Signature Verification Given: signature z ∈ F n + v , message (hash value) w ∈ F n − a Compute w ′ = P ( z ) ∈ F n − a Accept the signature z ⇔ w ′ = w . A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 8 / 25

  9. Direct Attack � � 2 � � n − a n − a Complexity direct = 3 · · d reg 2 Experiments: HFEv- systems can be solved faster than random systems Reason: low degree of regularity � ( q − 1) · ( r + a + v − 1) + 2 q even and r + a odd , 2 d reg ≤ , ( q − 1) · ( r + a + v ) + 2 otherwise . 2 with r = ⌊ log q ( D − 1) ⌋ + 1. Experiments: d reg ≈ r + a + v +7 for HFEv- systems over GF(2). 3 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 9 / 25

  10. Q-Rank Definition Let E be a degree n extension of the field F q . The Q-rank of a quadratic q is the rank of the quadratic form φ ◦ F ◦ φ − 1 in map F ( x ) on F n E [ X 0 , . . . , X n − 1 ] via the identification X i = X q i . F : n quadratic polynomials f (1) , . . . f ( n ) in F q [ x o , . . . , x n − 1 ] Interpolation ⇒ F ⋆ : � n − 1 � n − 1 j = i α ji X q i · X q j in E [ X ] i =0 X i = X qi F ⋆ : � n − 1 � n − 1 ˆ → j = i α ij X i X j in E [ X 0 , . . . , X n − 1 ] i =0 F ⋆ : ( X 0 , . . . , X n − 1 ) · M · ( X 0 , . . . X n − 1 ) T ⇒ ˆ Q-rank( F ) = Rank( M ) Q-Rank is invariant under invertible affine transformations F → F ◦ T , but not under isomorphisms F → S ◦ F ◦ T A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 10 / 25

  11. Q-Rank (2) Definition Let E be a degree d < n extension field of F q . The min-Q-rank of a quadratic map F : F n q → F m q over E is min-Q-rank( F ) = min S max { Q-rank ( S ◦ F ◦ T ) } , T where S : F d q → F m q and T : F n q → F d q are nonzero linear transformations. The min-Q-Rank of a multivariate quadratic system is invariant under isomorphisms of polynomials. A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 11 / 25

  12. The KS-attack on HFE Idea: Use the low min-Q-rank of the central map F to recover an equivalent private key Lift public map P to the extension field E (polynomial interpolation) Solve a MinRank Problem to find linear map N with N ◦ P of low rank Later Improvement (Minors Modelling): N can be found by computing a Gr¨ obner basis over F (and computing the variety over E ) �� � ω � n + r + 1 Complexity MinRank = O r with 2 < ω ≤ 3. A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 12 / 25

  13. The algebra A E : degree n extension field of F , θ : primitive element of E φ : F n → E , φ ( x 0 , . . . , x n − 1 ) = � n − 1 i =0 x i α i isomorphism Φ : E → A , Φ( a ) = ( a , a q , . . . , a q n − 1 ) ∈ A ⊂ E n ⇒ We can pass between elements ( x 0 , . . . , x n − 1 ) ∈ F n and ( X , X q , . . . , X q n − 1 ) ∈ A by right multiplication with M n and M − 1 n , where   1 1 1 . . .   θ q n − 1 θ q  θ . . .     θ 2 q n − 1  θ 2 θ 2 q . . . M n =     . .  . .  . .   θ ( n − 1) q n − 1 θ n − 1 θ ( n − 1) q . . . A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 13 / 25

  14. The algebra A (cont.) To cover the vinegar variables v 1 , . . . , v v , we define � � M n 0 n × v � M n = 0 v × n I v lifting a vector ( x 0 , . . . , x n − 1 , v 1 , . . . , v v ) ∈ F n to an element of A × F v . A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 14 / 25

  15. MinRank then Projection We find T U T , . . . , U � T U T ) , ( P 1 , . . . , P n ) T − 1 M n = ( U � M n F ⋆ 0 � M n F ⋆ ( n − 1) � M n M n where U , T and P i are the matrix representations of the affine transformations U and T and the public polynomials P i , and F ⋆ i is the i -th Frobenius power of F over A × F v . We find that F ⋆ 0 has the form Rank ( F ⋆ 0 ) = r + a + v A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 15 / 25

  16. MinRank then Projection (2) 1 Apply a MinRank attack on the matrices P i (with target rank r + a + v ) ⇒ equivalent output transformation T ′ ⇒ matrix L representing the low Q -rank quadratic form T U ′ T . L = U ′ � M n F ⋆ 0 � M n 2 Find the vinegar subspace of L . ◮ project L to the orthogonal complement of a codimension 1 subspace of ker ( L ). Denote the result by ˆ L . ◮ Apply a further codimension one projection π to ˆ L . If there is a nontrivial intersection between ker ( π ) and the vinegar subspace, the rank of ˆ L will drop.   � � 2 � � n + r + v n − a + ( r + a + v + 1) 3 · q r + a +1   . Comp MP = O · r + a + v 2 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 16 / 25

  17. Project then MinRank 1 Apply a projection π , projecting the plaintext space to a codimension k subspace 2 Apply the MinRank attack If there is a nontrivial intersection between ker ( π ) and the vinegar subspace, we can find a quadratic form of degree less then r + a + v .  � � � 2 �  q c ( r + a + √ n − a ) − ( c +1 n + r + v − c n − a 2 )  . Comp PM = O · r + a + v − c 2 A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 17 / 25

  18. The Distinguisher Observation 1: Two HFEv- public keys P 1 and P 2 with same values for n , D and a but different values v 1 and v 2 Fix variables to get determined systems and solve the systems with F 4 ⇒ The step degrees of the F 4 algorithm will be different ⇒ This also holds when guessing (not too many) additional variables (hybrid approach) A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 18 / 25

  19. The Distinguisher (2) Observation 2: HFEv-( n , D , a , v ) public key P Define V = span ( T n +1 , . . . , T n + v ) Append ℓ ∈ V to the system P and apply F 4 ⇒ The so obtained system P ′ behaves exactly like an HFEv − ( n − 1 , D , a , v − 1 ) public key. A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 19 / 25

  20. The Distinguisher (3) Consider an HFEv-( n , D , a , v ) public key P Add the field equations { x 2 i − x i = 0 } to P Add randomly chosen linear equations ℓ 1 , . . . , ℓ k to P Solve the system with F 4 ⇒ By looking at the F 4 step degrees, we can distinguish the two cases 1) span ( ℓ 1 , . . . , ℓ k ) ∩ V = ∅ and 2) span ( ℓ 1 , . . . , ℓ k ) ∩ V � = ∅ . A. Petzoldt Cryptanalysis of HFEv- via Projection PQ Crypto 2018 20 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend