imprecise probability models for inference in exponential
play

Imprecise probability models for inference in exponential families - PowerPoint PPT Presentation

Imprecise probability models for inference in exponential families SYSTeMS-dialogue of 14 July 2005 Erik Quaeghebeur SYSTeMS research group General idea - Specific idea - A result - Updating - History - Classification p.1/14 Overview 1.


  1. Imprecise probability models for inference in exponential families SYSTeMS-dialogue of 14 July 2005 Erik Quaeghebeur SYSTeMS research group General idea - Specific idea - A result - Updating - History - Classification – p.1/14

  2. Overview 1. The general idea 2. Specifying the details 3. A useful result 4. Updating 5. History: how this research got started 6. An application: classification 7. Conclusions General idea - Specific idea - A result - Updating - History - Classification – p.2/14

  3. The general idea General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  4. The general idea Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  5. The general idea Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. Choose some prior C ( ψ ) : obtain a posterior after observing samples. General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  6. The general idea Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. Choose some prior C ( ψ ) : obtain a posterior after observing samples. Obtain the corresponding predictive distribution through � P ( x ) = Ψ CL x . General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  7. The general idea Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. Choose some prior C ( ψ ) : obtain a posterior after observing samples. Obtain the corresponding predictive distribution through � P ( x ) = Ψ CL x . Obtain the corresponding linear previsions P C and P P . General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  8. The general idea Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. Choose some prior C ( ψ ) : obtain a posterior after observing samples. Obtain the corresponding predictive distribution through � P ( x ) = Ψ CL x . Obtain the corresponding linear previsions P C and P P . Imprecision: take a set of priors, use the lower envelope theorem to obtain coherent lower previsions P C and P P . General idea - Specific idea - A result - Updating - History - Classification – p.3/14

  9. Specifying the details: sampling model Sampling model f ( x | ψ ) : likelihood function L x ( ψ ) , sufficient statistic. General idea - Specific idea - A result - Updating - History - Classification – p.4/14

  10. Specifying the details: sampling model Exponential family sampling model Ef ( x | ψ ) : likelihood L x ( ψ ) , sufficient statistic τ ( x ) of fixed dimension. Ef ( x | ψ ) = a ( x ) exp( � ψ, τ ( x ) � − b ( ψ )) . General idea - Specific idea - A result - Updating - History - Classification – p.4/14

  11. Specifying the details: sampling model Exponential family sampling model Ef ( x | ψ ) : likelihood L x ( ψ ) , sufficient statistic τ ( x ) of fixed dimension. Ef ( x | ψ ) = a ( x ) exp( � ψ, τ ( x ) � − b ( ψ )) . Multinomial sampling Likelihood function is a multivariate Bernoulli Br ( x | θ ) : x ∈ { 0 , 1 } d : � x � ≤ 1; τ ( x ) = x ; � d � ln( θ i θ ∈ (0 , 1) d : � θ � < 1 , θ 0 = 1 − � θ i ; ψ ( θ ) = ) ; θ 0 i =1 i a = 1; b ( ψ ( θ )) = ln( θ 0 ) . General idea - Specific idea - A result - Updating - History - Classification – p.4/14

  12. Specifying the details: sampling model Exponential family sampling model Ef ( x | ψ ) : likelihood L x ( ψ ) , sufficient statistic τ ( x ) of fixed dimension. Ef ( x | ψ ) = a ( x ) exp( � ψ, τ ( x ) � − b ( ψ )) . Normal sampling Likelihood is a Normal N ( x | µ, λ ) : τ ( x ) = ( x, x 2 ); x ∈ R ; µ ∈ R , λ ∈ R + , σ 2 = 1 ψ ( λ, µ ) = ( λµ, − 1 λ ; 2 λ ); b ( ψ ( µ, λ )) = λµ 2 − ln( λ ) 1 √ a = 2 π ; . 2 General idea - Specific idea - A result - Updating - History - Classification – p.4/14

  13. Specifying the details: conjugate Choose some prior C ( ψ ) : obtain a posterior after observing samples. General idea - Specific idea - A result - Updating - History - Classification – p.5/14

  14. Specifying the details: conjugate Choose a conjugate prior CEf ( ψ | n 0 , y 0 ) : easily obtain a posterior CEf ( ψ | n k , y k ) after observing k samples. CEf ( ψ | n, y ) = c ( n, y ) exp( n [ � ψ, y � − b ( ψ )]) General idea - Specific idea - A result - Updating - History - Classification – p.5/14

  15. Specifying the details: conjugate Choose a conjugate prior CEf ( ψ | n 0 , y 0 ) : easily obtain a posterior CEf ( ψ | n k , y k ) after observing k samples. CEf ( ψ | n, y ) = c ( n, y ) exp( n [ � ψ, y � − b ( ψ )]) Multinomial sampling The conjugate distribution is a Dirichlet distribution Di ( θ | ny, ny 0 ) : y ∈ (0 , 1) d : � y � < 1 , y 0 = 1 − � y i ; i Γ( n ) c ( n, y ) = i Γ( ny i ) . Γ( ny 0 ) � General idea - Specific idea - A result - Updating - History - Classification – p.5/14

  16. Specifying the details: conjugate Choose a conjugate prior CEf ( ψ | n 0 , y 0 ) : easily obtain a posterior CEf ( ψ | n k , y k ) after observing k samples. CEf ( ψ | n, y ) = c ( n, y ) exp( n [ � ψ, y � − b ( ψ )]) Normal sampling The conjugate distribution is a Normal-gamma distribution n [ y 2 − y 1 2 ] N ( µ | y 1 , nλ ) Ga ( λ | n +3 2 , ) : 2 y ∈ R × R + : y 2 − y 12 > 0; � n +3 � n [ y 2 − y 1 2 ] 2 c ( n, y ) = 2 √ n 2 √ . Γ( n +3 2 ) 2 π General idea - Specific idea - A result - Updating - History - Classification – p.5/14

  17. Specifying the details: predictive Obtain the corresponding predictive distribution through � P ( x ) = Ψ CL x . General idea - Specific idea - A result - Updating - History - Classification – p.6/14

  18. Specifying the details: predictive Obtain the corresponding predictive distribution through c ( n, y ) a ( x ) � PEf ( x | n, y ) = CEf ( · | n, y ) L x = . c ( n + 1 , ny + τ ( x ) ) Ψ n +1 General idea - Specific idea - A result - Updating - History - Classification – p.6/14

  19. Specifying the details: predictive Obtain the corresponding predictive distribution through c ( n, y ) a ( x ) � PEf ( x | n, y ) = CEf ( · | n, y ) L x = . c ( n + 1 , ny + τ ( x ) ) Ψ n +1 Multinomial sampling The predictive distribution is a Dirichlet-multinomial distribution DiMn ( x | ny, ny 0 ) . Normal sampling The predictive distribution is a Student distribution St ( x | y 1 , n +3 1 1 , n + 3) . n +1 y 2 − y 2 General idea - Specific idea - A result - Updating - History - Classification – p.6/14

  20. Specifying the details: linear previsions Obtain the corresponding linear previsions P C and P P . General idea - Specific idea - A result - Updating - History - Classification – p.7/14

  21. Specifying the details: linear previsions Obtain the corresponding linear previsions � P C ( f | n k , y ) = CEf ( · | n k , y ) f, f ∈ L (Ψ) ≈ [Ψ → R ] . Ψ and � P P ( f | n k , y ) = PEf ( · | n k , y ) f, f ∈ L ( X ) ≈ [ X → R ] . X General idea - Specific idea - A result - Updating - History - Classification – p.7/14

  22. Specifying the details: lower previsions Imprecision: take a set of priors, use the lower envelope theorem to obtain coherent lower previsions P C and P P . General idea - Specific idea - A result - Updating - History - Classification – p.8/14

  23. Specifying the details: lower previsions Imprecision: take a set of priors, one for every y ∈ Y 0 , use the lower envelope theorem to obtain coherent lower previsions P C ( · | n k , Y k ) = inf y ∈Y k P C ( · | n k , y ) . and P P ( · | n k , Y k ) = inf y ∈Y k P P ( · | n k , y ) . General idea - Specific idea - A result - Updating - History - Classification – p.8/14

  24. A useful result � P ( τ | ψ ) = Ef ( · | ψ ) τ X General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  25. A useful result � P ( τ | ψ ) = Ef ( · | ψ ) τ X Multinomial sampling P ( τ | ψ ) = θ ( ψ ) . Normal sampling P ( τ | ψ ) = ( µ ( ψ ) , m 2 ( ψ )) . General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  26. A useful result P ( τ | Ψ) General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  27. A useful result P C ( P ( τ | Ψ) | n k , y k ) = y k General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  28. A useful result P C ( P ( τ | Ψ) | n k , Y k ) = inf Y k General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  29. A useful result P C ( P ( τ | Ψ) | n k , Y k ) = inf Y k P C ( P ( τ | Ψ) | n k , Y k ) = sup Y k General idea - Specific idea - A result - Updating - History - Classification – p.9/14

  30. Updating Initial choice n 0 ∈ R + and Y 0 ⊂ Y (bounded). General idea - Specific idea - A result - Updating - History - Classification – p.10/14

  31. Updating Initial choice n 0 ∈ R + and Y 0 ⊂ Y (bounded). Take k samples, keep sufficient statistic τ k . General idea - Specific idea - A result - Updating - History - Classification – p.10/14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend