challenges on the use of imprecise prior
play

Challenges on the use of Imprecise Prior for Imprecise Inference on - PowerPoint PPT Presentation

Challenges on the use of Imprecise Prior for Imprecise Inference on Poisson Sampling Models Chel Hee Lee 1 , elis Bickis 2 Mik 1 Clinical Research Support Unit Community Health and Epidemiology College of Medicine University of Saskatchewan 2


  1. Challenges on the use of Imprecise Prior for Imprecise Inference on Poisson Sampling Models Chel Hee Lee 1 , elis Bickis 2 Mik 1 Clinical Research Support Unit Community Health and Epidemiology College of Medicine University of Saskatchewan 2 Department of Mathematics and Statistics University of Saskatchewan 9th WPMSIIP, Durham, England 4 September 2016 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 1 / 37

  2. Motivation 1 Imprecise Inferential Framework 2 Illustration 3 Scenario I Scenario II Scenario III-1 Scenario III-2 Discussion 4 References 5 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 2 / 37

  3. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 X8224 1 5 5 5 5 5 1 1 1 X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  4. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 X8224 1 5 5 5 5 5 1 1 1 X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  5. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 X8224 1 5 5 5 5 5 1 1 1 X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  6. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 X8224 1 5 5 5 5 5 1 1 1 X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  7. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 X8224 1 5 5 5 5 5 1 1 1 Hyperparameters ξ X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  8. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 ξ 1 X8224 1 5 5 5 5 5 1 1 1 Hyperparameters ξ X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  9. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 ξ 2 ξ 1 X8224 1 5 5 5 5 5 1 1 1 Hyperparameters ξ X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  10. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 ξ 2 ξ 1 ξ 3 X8224 1 5 5 5 5 5 1 1 1 Hyperparameters ξ X8225 3 6 6 6 6 6 1 1 1 X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  11. Motivation General Framework P. I. N. Count 1 1 1 1 1 1 1 1 X8213 0 2 2 2 2 2 1 1 1 X8222 2 3 3 3 3 3 1 1 1 X8223 1 4 4 4 4 4 1 1 1 ξ 2 ξ 1 ξ 3 X8224 1 5 5 5 5 5 1 1 1 ξ X8225 3 6 6 6 6 6 1 1 1 Lower Bound Upper Bound X8226 2 7 7 7 7 7 1 1 1 θ Prior Distribution X8227 7 8 8 8 8 8 1 1 1 X8227 7 8 8 8 8 8 1 1 1 Sampling Model Y i X8227 7 8 8 8 8 8 1 1 1 Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 3 / 37

  12. Motivation Robust Bayesian Analysis (Berger et al., 1994, pp. 24–25) A prior distribution should be easy to elicit and interpret, easy to handle computationally, reasonable to reflect uncertainty, extensible to higher dimensions, and adaptable to incorporate constraints Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 4 / 37

  13. Motivation HOW? ? Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 5 / 37

  14. Imprecise Inferential Framework Imprecise Inferential Framework Canonical Representation Consider a family of probability measures P θ whose density with respect to µ : dP θ ( y ) = exp { θ · t ( y ) − A ( θ ) } d µ ( y ) , where t : R m → R k is a measurable function of y and the cumulant transform � A ( θ ) = ln exp { θ · t ( y ) } d µ ( y ) serves to normalize the measure P θ . Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 6 / 37

  15. Imprecise Inferential Framework Imprecise Inferential Framework Conjugate Prior Formulation We consider the following family of prior measures for P θ with respect to Lebesgue measure: d π ξ 2 ,ξ 1 ,ξ 0 ( θ ) ∝ exp {− ξ 2 θ 2 + θξ 1 − ξ 0 A ( θ ) − M ( ξ 2 , ξ 1 , ξ 0 ) } d θ, where ξ = ( ξ 2 , ξ 1 , ξ 0 ) are hyperparameters and � ∞ exp {− ξ 2 θ 2 + θξ 1 − ξ 0 A ( θ ) } d θ < + ∞ M ( ξ 2 , ξ 1 , ξ 0 ) = ln −∞ is the cumulant transform of ξ producing the densities π ξ ( θ ) . Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 6 / 37

  16. Imprecise Inferential Framework Illustration (based on Poisson samples) Consider the problem of parameter estimation (Scenario 1) when a prior is conjugate to a likelihood using a log-gamma prior distribution (Scenario 2) when a prior is not conjugate to a likelihood using a normal prior distribution (Scenario 3) under the generalized linear model setting having only intercept incorporating a single predictor (with an intercept) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 7 / 37

  17. Illustration Scenario I Scenario I Using Log-Gamma Priors If µ ∼ Gamma ( α, β ) and θ = log ( µ ) , π α,β ( θ ) ∝ e αθ − β e θ We see the following e ( y θ − e θ ) e ( αθ − β e θ ) p ( θ | y ) ∝ e ( α + y ) θ − ( β + 1 ) e θ = which has the form p ( θ | y ) ∝ exp ( − ξ 2 θ 2 + ξ 1 θ − ξ 0 e θ ) with hyperparameters ξ 2 = 0 , ξ 1 = α 1 + y , ξ 0 = β + 1 , (1) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 8 / 37

  18. Illustration Scenario I Set Basic Analytical Frame 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 3 2 2 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 9 / 37

  19. Illustration Scenario I Assume Poisson Mean Parameter ( µ = 1 ) 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 3 2 2 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 10 / 37

  20. Illustration Scenario I Before Seeing Data 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 3 2 2 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 11 / 37

  21. Illustration Scenario I After Seeing One Observation 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 3 2 2 1 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 12 / 37

  22. Illustration Scenario I One More Observation 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 3 1 2 2 1 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 13 / 37

  23. Illustration Scenario I See What Data Tell Us 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 4 4 1 3 1 2 2 1 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 14 / 37

  24. Illustration Scenario I Continue to Watch! 10 10 9 ξ 0 (number of observations) 8 8 7 6 6 5 0 4 4 1 3 1 2 2 1 1 0 0 2 4 6 8 10 ξ 1 (sum) Chel Hee Lee, Mik , elis Bickis (USASK) Imprecise Inference 2016-SEP-04 15 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend