impartial culture asymptotics
play

Impartial-culture asymptotics a central limit theorem for - PowerPoint PPT Presentation

Voting rules Manipulation Coalition size Asymptotics Impartial-culture asymptotics a central limit theorem for manipulation of elections Geoffrey Pritchard , Mark Wilson University of Auckland March 20, 2009 Geoffrey Pritchard , Mark


  1. Voting rules Manipulation Coalition size Asymptotics Impartial-culture asymptotics a central limit theorem for manipulation of elections Geoffrey Pritchard ∗ , Mark Wilson University of Auckland March 20, 2009 Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  2. Voting rules Manipulation Coalition size Asymptotics Voting rules One of m candidates must be elected by n voters. How much information to ask the voters for? favourite candidate less info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e.g. plurality) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . preference order approval set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . more info . . . . . . . . . . candidate ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  3. Voting rules Manipulation Coalition size Asymptotics Preference-order rules Each voter has one of the m ! possible preference orders (types, opinions). A full profile specifies the type of each voter. A voting situation specifies only the number of voters of each type this is all we need, if the voting rule treats voters symmetrically (anonymously). e.g. 3 candidates, 6 preference orders 6 � N = ( N 1 , N 2 , N 3 , N 4 , N 5 , N 6 ) , with N i = n i =1 Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  4. Voting rules Manipulation Coalition size Asymptotics Scoring (positional) voting rules A candidate gets w i points when a voter ranks him in i th place; 1 = w 1 ≥ w 2 ≥ · · · ≥ w m = 0 . Example (3 candidates): abc acb bac bca cab cba number of voters N t : 2 2 0 3 1 0 For w = (1 , 1 2 , 0) (Borda’s rule), a wins. For w = (1 , 1 , 0) (anti-plurality rule), c wins. Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  5. Voting rules Manipulation Coalition size Asymptotics Probabilistic voter behaviour IAC: all voting situations are equally likely to occur. For large n , our voting situation is approximately uniformly distributed on a simplex. Probabilities → volumes of convex bodies... IC: voters have independent, uniform random types. For large n , our voting situation is approximately (multivariate) normally distributed. Central Limit Theorem, here we come... Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  6. Voting rules Manipulation Coalition size Asymptotics IC asymptotics Voting situation m ! + √ n ( m ! − 1) 1 / 2 n ∼ : Z t , Z t ∼ N (0 , 1) N t m ! The voter types are about equally numerous. Scoreboard � 1 / 2 w + √ n σ w � m � ( Z α − ¯ | α | = N t σ t ( α ) ∼ n ¯ : Z ) m − 1 t The scores tend to be nearly equal. Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  7. Voting rules Manipulation Coalition size Asymptotics Tied scores Ignore the possibility of tied scores. P (any ties) → 0 as n → ∞ . Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  8. Voting rules Manipulation Coalition size Asymptotics Manipulation Logical possibility of manipulation: some coalition of voters can improve the result (for themselves) by voting insincerely. Ignores counterthreats Ignores complexity IC is very manipulable: P (L.P.M.) → 1 as n → ∞ for all scoring rules except anti-plurality. Minimum manipulating coalition size MCS ( ∞ if not L.P.M.) Study the distribution of this random variable. Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  9. Voting rules Manipulation Coalition size Asymptotics Recruiting a manipulating coalition Our coalition will contain (for each type t ): x t voters (sincerely) of type t ; y t voters who insincerely vote t ; � � x t = y t . t t Post-manipulation score of α is � | α | + ( y t − x t ) σ t ( α ) . t Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  10. Voting rules Manipulation Coalition size Asymptotics Manipulation: an integer linear program Minimum manipulating coalition size MCS = min β Q 1 ( β ), where Q 1 ( β ) = min x , y Σ t x t s.t. | β | + Σ t ( y t − x t ) σ t ( β ) ≥ | α | + Σ t ( y t − x t ) σ t ( α ) ∀ α � = β t x t = t y t Σ Σ ≥ 0 y t 0 ≤ x t ≤ N t x t , y t integer For IC and large n , we’ll want x t ∼ √ n , but N t ∼ n , so the last two constraints will very rarely matter. Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  11. Voting rules Manipulation Coalition size Asymptotics Phantom voters Let Q 2 = min. coalition size without the last two constraints. Now we can recruit non-existent voters, of any types we please. Example (3 candidates): abc acb bac bca cab cba number of voters N t : 2 2 0 3 1 0 Borda scores: | a | = 4 . 5, | b | = 4, | c | = 3 . 5. Regular manipulation: Q 1 ( b ) = ∞ . Everybody who prefers b to a already ranks b top, a bottom. Relaxed manipulation: Q 2 ( b ) = 1. One cba could do it (by voting bca ). To make b sole winner, 1 . 00001 such voters would suffice. But this example is misleading . . . Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  12. Voting rules Manipulation Coalition size Asymptotics Phantom voters don’t hurt Theorem. Relaxing makes manipulation easier, but not by much. P ( | Q 1 ( β ) − Q 2 ( β ) | ≤ K ) → 1 as n → ∞ , where K depends only on the voting rule. Coalition sizes Q i ( β ) ∼ √ n , so allowing phantom voters really hasn’t made much difference. Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  13. Voting rules Manipulation Coalition size Asymptotics Phantom-voter manipulation is well-behaved Theorem. Second-placegetter has smallest phantom manipulating coalition. min β Q 2 ( β ) = Q 2 ( b ) . (Only the constraint x t ≥ N t could have given another candidate a smaller one.) Theorem. Minimal phantom coalition for b consists only of types . . . ba . . . (They can insincerely put b first and a last.) Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  14. Voting rules Manipulation Coalition size Asymptotics Phantom-voter manipulation is well-behaved Theorem. Second-placegetter has smallest phantom manipulating coalition. min β Q 2 ( β ) = Q 2 ( b ) . (Only the constraint x t ≥ N t could have given another candidate a smaller one.) Theorem. Minimal phantom coalition for b consists only of types . . . ba . . . (They can insincerely put b first and a last.) Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  15. Voting rules Manipulation Coalition size Asymptotics An even simpler linear program Recruit z i phantom voters of types ranking b in i th place, a in ( i + 1)st place. Consider Q = min z Σ i z i s.t. i (1 − w i + w i +1 ) z i ≥ | a | − | b | ( b catches up to a ) Σ i (1 − w i ) z i ≥ n ¯ w − | b | ( b above average) Σ z i ≥ 0 Theorem. These two constraints are enough! Q = Q 2 ( b ) ( ≈ MCS ) . Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

  16. Voting rules Manipulation Coalition size Asymptotics A two-variable linear program Take the dual linear program: two variables only. Q = max { ( | a | − n ¯ w ) λ + ( n ¯ w − | b | ) µ : ( λ, µ ) ∈ M w } where the feasible set M w = { ( λ, µ ) : 0 ≤ λ ≤ µ and w i +1 λ + (1 − w i ) µ ≤ 1 ∀ i } depends only on the voting rule. The random coefficients ( | a | − n ¯ w , n ¯ w − | b | ) : ∼ bivariate normal Geoffrey Pritchard ∗ , Mark Wilson Impartial-culture asymptotics

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend