image analysis
play

Image Analysis Stuart Geman (with E. Borenstein, L.-B. Chang, W. - PowerPoint PPT Presentation

Generative Hierarchical Models for Image Analysis Stuart Geman (with E. Borenstein, L.-B. Chang, W. Zhang) I. Image modeling II. Data likelihood III. Priors: content/context sensitivity I. Image modeling Red herrings? Bayesian


  1. Generative Hierarchical Models for Image Analysis Stuart Geman (with E. Borenstein, L.-B. Chang, W. Zhang)

  2. I. Image modeling II. Data likelihood III. Priors: content/context sensitivity

  3. I. Image modeling • Red herrings? • Bayesian (generative) image models II. Data likelihood III. Priors: content/context sensitivity

  4. Practical vision problems: What is the end-product of processing? machine vision: machine analysis human vision: “The more you look, the more you see”

  5. Learning Theory: Pure learning ( label ) x Tree  ( image ) y ( ) black box No Tree      N , , ,..., Given y x produce so that  1 2 k k 1 N k       N black box OPTIMAL classifier

  6. Performance of stressed biological systems: Super-rapid response… In this circumstance: machine vision achieves biological performance

  7. I. Image modeling • Red herrings? • Bayesian (generative) image models II. Data likelihood III. Priors: content/context sensitivity

  8. I. Bayesian (generative) image models Prior I set of possible "interpretations" or "parses"  x I a particular interpretation ( ) P x probability model on I * very structured and constrained * organizing principles: hierarchy and reusability (Amit, Buhmann, Felzenszwalb, Mumford, Pogio, Yuille, Zhu, etc.) * non-Markovian (context/content sensitive) Data likelihood y image ( | ) P y x conditional probability model Posterior  ( | ) ( | ) ( ) P x y P y x P x

  9. I. Image modeling II. Data likelihood • Feature distributions and data distributions • Conditional modeling • Examples: learning templates III. Priors: content/context sensitivity

  10. Feature distributions and data distributions  y pixel intensity at s S S s  { } y y  s s S image patch Given a category (e.g. edge, corner, eye, face, (eye,pose ),…), model patch through a feature model: ( ) f y "feature" e.g.  ( ) for short f y variance of patch histogram of gradients, sift features, etc. template correlation ( ) for short P f   ( ; ) P f proba bility model F F    1 ,..., , Problem: given y y samples of eye patches, learn and N

  11. Use maximum likelihood…but what is the likelihood? ( ),..., ( ) f y f y Tempting to PRETEND that the data is : 1 N N     ( ( ),..., ( ); , ) ( ( )) L f y f y P f y 1 N F k  1 k caution: this is different from 1  ( ) ( ( )) Y P y P f y F Z   , ,..., BUT the data is y y and N 1   ( ) ( ( )) ( | ( )) P y P f y P y F f y Y F Y N       ( ,..., ; , ) ( ( )) ( | ( )) L y y P f y P y F f y 1 N F k Y k k  1 k  The first is fine for estimating P (i.e. ), F  but not fine for estimating (i.e. ) f

  12. I. Image modeling II. Data likelihood • Feature distributions and data distributions • Conditional modeling • Examples: learning templates III. Priors: content/context sensitivity

  13. Conditional modeling  ( ) For any category (e.g. "eye") and feature g F f Y   g g g ( ) ( ( )) ( | ( )) P y P f y P y F f y Y F Y  g g ( ( )) ( | ). Easy to model P f y ; hard to model P y F f F Y Proposal: start with a "null" or "background" o g ( ) ( ) distribution P y and choose P y Y Y g ( ) 1. consistent with P f , and F o ( ) 2. otherwise "as close as possible" to P y Y

  14. Conditional modeling: a perturbation of the null distribution g o ( ) ( ), Specifically, given P f , and a null distribution P y F Y choose  g o ( ) arg min ( || ) P y D P P Y Y Y : ( ) P F Y has Y g P ( f ) distribution F    g g o ( ) ( ( )) ( | ( )) P y P f y P y F f y Y F Y   ( ) P y % ( || ) ( )log (where D P P P y dy is K-L divergence) % ( ) P y

  15. Estimation    g g 1 ,..., ( ) ( ; ) y y P f P f Given , ), and N F F    g g o ( ) ( ( )) ( | ( )) P y P f y P y F f y Y F Y   : estimate and   argmax ( ,..., ; , ) L y y 1 N   , g N ( ( )) P f y    argmax F k .... o ( ( )) P f y    1 k F k ,

  16. In fact, for arbitrary mixture (e.g. over poses, templates, vector quanta, …):    g g ( ) ( ; ) 1,2,..., P f P f ), m M  F m F m  m m m M     g g o ( ) ( ( )) ( | ( )) P y P f y P y F f y Y m F m Y m m m  1 m       argmax ( ,..., ; ,..., ,..., ,..., ) L y y 1 1 1 1 N m m m       ,..., ,..., ,..., 1 m 1 m 1 m g ( ( )) P f y N M      argmax F m k .... m m o ( ( )) P f y         1 1 k m F m k ,..., ,..., ,..., m 1 m 1 m 1 m

  17. I. Image modeling II. Data likelihood • Feature distributions and data distributions • Conditional modeling • Examples: learning templates III. Priors: content/context sensitivity

  18. Example: learning eye templates  y pixel intensity at s S S s  { } y y  s s S image patch   ( ) ( ) ( , ), Take f y c y corr T y and model eyes as a  T mixture: M     e e o ( ) ( ( )) ( | ( )) P y P c y P y C c y Y m C T Y T T T m m m m  m 1 M        (1 c ( )) y o ( | ( )) = e m Tm P y C c y  m Y T T m m m m=1

  19. o : Null distribution, P for estimation Y o ( ) only P c C T matters...   2 o o ( ) (0, P sample P c N ) Y C T 1   iid | | S 10   random | | S image patch 15   random | | S smooth image patch

  20. Example: learning eye templates Examples of faces from Feret database  With N 500 compute     argmax ( ,..., | ,..., , ,..., , ,..., ) L y y T T 1 1 1 1 N m m m     ,..., ,..., T ,..., T 1 1 1 m m m     (1 ( )) c y e m T k N M m      argmax m m o ( ( )) P c y       1 k 1 m ,..., ,..., ,..., C T k T T T m 1 m 1 m 1 m m

  21. Example: learning eye templates, mixing over position, scale, and template samples from training set learned templates Top to bottom: EM iterations

  22. Example: learning (right) eye templates What if we forget all this nonsense and just maximize     (1 ( )) c y e m T k N M N M m           (1 ( ))  c y ) e m T k (instead of ? m m  m m o ( ( )) P c y m     1 1 k 1 m k 1 m C T k T m m

  23. How good are the templates? A classification experiment… Classify East Asian and South Asian * mixing over 4 scales, and 8 templates East Asian: (L) examples of training images (M) progression of EM (R) trained templates South Asian: (L) examples of training images (M) progression of EM (R) trained templates Classification Rate: 97%

  24. Other examples: noses 16 templates multiple scales, shifts, and rotations samples from training set learned templates

  25. Other examples: mixture of noses and mouths samples from training set 32 learned templates (1/2 noses, 1/2 mouths)

  26. Other examples: train on 58 faces …half with glasses…half without samples from training set 32 learned templates 6 learned templates

  27. Other examples: train on 58 faces …half with glasses…half without 6 learned templates random eight of the 58 faces row 2 to 5, top to bottom: templates ordered by posterior likelihood

  28. Other examples: train on 58 faces …half with glasses…half without top row: the six learned templates row 2 to 5, top to bottom: Training images ordered by correlation

  29. Other examples: train random patches (“sparse representation”) 500 random 15x15 training patches from 24 10x10 templates random internet images

  30. Other examples: coarse representation   ( ) ( , ( )), use f y Corr T D y where D downconvert  ( ) ( ( ), )?) (go other way for super res.: f y Corr D T y training of 8 low-res (10x10) templates

  31. Grenander : “pattern synthesis=pattern analysis” (approximate) sampling… 0 32 samples from mixture model with P white noise Y

  32. (approximate) sampling…  0 32 samples from mixture model with P Caltech 101 Y

  33. (approximate) sampling… 0 32 samples from mixture model with P population of Y smooth image patches

  34. I. Image modeling II. Data likelihood III. Priors: content/context sensitivity • Hierarchical models and the Markov dilemma • Conditional modeling • Examples: detecting faces and reading license plates

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend