identifjcation analysis and higher order approximation of
play

Identifjcation analysis and higher-order approximation of DSGE - PowerPoint PPT Presentation

Identifjcation analysis and higher-order approximation of DSGE models Willi Mutschler 1 Introduction Introduction diffjcult to maximize likelihood/posterior or minimize some (moment) lack of vs. strength of identifjcation actually


  1. Identifjcation analysis and higher-order approximation of DSGE models Willi Mutschler 1

  2. Introduction

  3. Introduction • diffjcult to maximize likelihood/posterior or minimize some (moment) • lack of vs. strength of identifjcation actually estimating the model • BUT: identifjability is a model property and can be analyzed without • Gaussian asymptotics yield poor approximations • estimators often lie on the boundary of theoretically admissible space objective function unfortunate choice of observables Identifjcation Problem • in practice, many caveats due to identifjability issues and/or an estimation and inference • lack of identifjcation leads to wrong conclusions from calibration, distribution of data (in particular moments and spectra) • distinct parameter values do not lead to a distinct probability 2 p ( Y | θ ) = p ( Y | θ 0 ) � θ = θ 0

  4. Introduction • diffjcult to maximize likelihood/posterior or minimize some (moment) • lack of vs. strength of identifjcation actually estimating the model • BUT: identifjability is a model property and can be analyzed without • Gaussian asymptotics yield poor approximations • estimators often lie on the boundary of theoretically admissible space objective function unfortunate choice of observables Identifjcation Problem • in practice, many caveats due to identifjability issues and/or an estimation and inference • lack of identifjcation leads to wrong conclusions from calibration, distribution of data (in particular moments and spectra) • distinct parameter values do not lead to a distinct probability 2 p ( Y | θ ) = p ( Y | θ 0 ) � θ = θ 0

  5. Introduction • diffjcult to maximize likelihood/posterior or minimize some (moment) • lack of vs. strength of identifjcation actually estimating the model • BUT: identifjability is a model property and can be analyzed without • Gaussian asymptotics yield poor approximations • estimators often lie on the boundary of theoretically admissible space objective function unfortunate choice of observables Identifjcation Problem • in practice, many caveats due to identifjability issues and/or an estimation and inference • lack of identifjcation leads to wrong conclusions from calibration, distribution of data (in particular moments and spectra) • distinct parameter values do not lead to a distinct probability 2 p ( Y | θ ) = p ( Y | θ 0 ) � θ = θ 0

  6. Example (1): ARMA(1,1)

  7. Example (1): ARMA(1,1) (I) • consider the following ARMA(1,1)-process 3 iid x t − φ 1 x t − 1 = ε t − φ 2 ε t − 1 , with ε t ∼ N ( 0 , σ 2 ) with parameter vector θ = ( φ 1 , φ 2 , σ ) ′ : ARMA(1,1) with θ = (0.4, 0.4, 1) 3 2 1 x 0 −1 −2 0 20 40 60 80 100 time

  8. Example (1): ARMA(1,1) (I) • consider the following ARMA(1,1)-process 3 iid x t − φ 1 x t − 1 = ε t − φ 2 ε t − 1 , with ε t ∼ N ( 0 , σ 2 ) with parameter vector θ = ( φ 1 , φ 2 , σ ) ′ : ARMA(1,1) with θ = (0, 0, 1) 3 2 1 x 0 −1 −2 0 20 40 60 80 100 time

  9. Example (1): ARMA(1,1) (II) • rank of Jacobian of • similar argument applies to the spectral density matrix 2 1 is not full at w.r.t 1 4 1 • autocovariance function: Γ = ( γ 0 , γ 1 , . . . , γ h ) with γ 0 = ( 1 + φ 2 2 − 2 φ 1 φ 2 ) σ 2 , 1 − φ 2 γ 1 = ( φ 1 − φ 2 )( 1 − φ 1 φ 2 ) σ 2 , 1 − φ 2 γ h = φ 1 γ h − 1

  10. Example (1): ARMA(1,1) (II) 1 1 • similar argument applies to the spectral density matrix 4 • autocovariance function: Γ = ( γ 0 , γ 1 , . . . , γ h ) with γ 0 = ( 1 + φ 2 2 − 2 φ 1 φ 2 ) σ 2 , 1 − φ 2 γ 1 = ( φ 1 − φ 2 )( 1 − φ 1 φ 2 ) σ 2 , 1 − φ 2 γ h = φ 1 γ h − 1 • rank of Jacobian of Γ w.r.t θ is not full at φ 1 = φ 2

  11. Example (1): ARMA(1,1) (II) 1 1 • similar argument applies to the spectral density matrix 4 • autocovariance function: Γ = ( γ 0 , γ 1 , . . . , γ h ) with γ 0 = ( 1 + φ 2 2 − 2 φ 1 φ 2 ) σ 2 , 1 − φ 2 γ 1 = ( φ 1 − φ 2 )( 1 − φ 1 φ 2 ) σ 2 , 1 − φ 2 γ h = φ 1 γ h − 1 • rank of Jacobian of Γ w.r.t θ is not full at φ 1 = φ 2

  12. Example (2): Simple DSGE Model

  13. 0 A 1 lie within unit 0 A 1 E t y t 0 A 1 0 E t Example (2): Simple DSGE Model(I) A y t circle, implies: 1 • stationary solution of the model, i.e. Eigenvalues of A t t S t D t M 1 1 A 1 1 t 0 1 A j t j A 1 1 A 0 j t 0 1 E t y t t • consider a simple purely forward looking log-linearized model x t t t t or 1 0 1 1 0 0 1 E t r t A 0 t 0 1 E t x t 1 y t A 1 E t r t 0 1 1 0 0 0 0 5 r t = ψπ t + ε M ( TR ) x t = E t x t + 1 − 1 τ ( r t − E t π t + 1 ) + ε D ( IS ) π t = β E t π t + 1 + κ x t + ε S ( PC )

  14. 0 A 1 lie within unit 0 A 1 E t y t 0 A 1 0 E t circle, implies: 1 • stationary solution of the model, i.e. Eigenvalues of A t t t A 1 • consider a simple purely forward looking log-linearized model A 0 0 1 1 0 0 0 y t Example (2): Simple DSGE Model(I) 1 j A t 0 1 A j t 1 1 y t A 0 j t 0 1 A 1 0 5 or r t t A 0 0 1 1 t x t 1 0 0 1 t r t = ψπ t + ε M ( TR ) x t = E t x t + 1 − 1 τ ( r t − E t π t + 1 ) + ε D ( IS ) π t = β E t π t + 1 + κ x t + ε S ( PC )           − ψ ε M E t r t + 1           = + ε D           E t x t + 1 τ τ − κ π t β E t π t + 1 ε S � �� � � �� � � �� � � �� � � �� � ε t E t y t + 1

  15. Example (2): Simple DSGE Model(I) 0 1 A 0 r t x t y t 0 0 0 1 0 • consider a simple purely forward looking log-linearized model 0 0 A 1 t t t circle, implies: 0 1 1 0 t t t or 1 5 1 r t = ψπ t + ε M ( TR ) x t = E t x t + 1 − 1 τ ( r t − E t π t + 1 ) + ε D ( IS ) π t = β E t π t + 1 + κ x t + ε S ( PC )           − ψ ε M E t r t + 1           = + ε D           E t x t + 1 τ τ − κ π t β E t π t + 1 ε S � �� � � �� � � �� � � �� � � �� � ε t E t y t + 1 • stationary solution of the model, i.e. Eigenvalues of A − 1 0 A 1 lie within unit � ∞ y t = A − 1 0 A 1 E t y t + 1 + A − 1 ( A − 1 0 A 1 ) j A − 1 0 E t ε t + j = A − 1 0 ε t = 0 ε t j = 0

  16. Example (2): Simple DSGE Model(II) , all parameters are identifjable 0 t t t • some insights • some parameters ( ) do not enter solution, thus do not enter the likelihood (or any other objective) • if we fjx (or calibrate) • some parameters enter as products, e.g. 1 , identifying them separately may be impossible (depending on choice of observables) • is already the product of several other structural parameters (Calvo or Rotemberg) • restrictions necessary to ensure regularity (Eigenvalues inside unit circle) imply bounds involving all structural parameters, i.e. parameter space is not variation free • solution/data-generating-process/reduced-form 6 1 1 r t x t 1       κψ ψ ε M        = − 1 − 1 ε D      κψ τ τ τ + 1 − κ π t κ ε S τ � �� � A − 1

  17. Example (2): Simple DSGE Model(II) , all parameters are identifjable 0 t t t • some insights • some parameters ( ) do not enter solution, thus do not enter the likelihood (or any other objective) • if we fjx (or calibrate) • some parameters enter as products, e.g. 1 , identifying them separately may be impossible (depending on choice of observables) • is already the product of several other structural parameters (Calvo or Rotemberg) • restrictions necessary to ensure regularity (Eigenvalues inside unit circle) imply bounds involving all structural parameters, i.e. parameter space is not variation free • solution/data-generating-process/reduced-form 6 1 1 r t x t 1       κψ ψ ε M        = − 1 − 1 ε D      κψ τ τ τ + 1 − κ π t κ ε S τ � �� � A − 1

  18. Example (2): Simple DSGE Model(II) , all parameters are identifjable • solution/data-generating-process/reduced-form 0 t t t • some insights likelihood (or any other objective) • if we fjx (or calibrate) • some parameters enter as products, e.g. 1 , identifying them separately may be impossible (depending on choice of observables) • is already the product of several other structural parameters (Calvo or Rotemberg) • restrictions necessary to ensure regularity (Eigenvalues inside unit circle) imply bounds involving all structural parameters, i.e. parameter space is not variation free 1 6 1 x t r t 1       κψ ψ ε M        = − 1 − 1 ε D      κψ τ τ τ + 1 − κ π t κ ε S τ � �� � A − 1 • some parameters ( β ) do not enter solution, thus do not enter the

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend