i n h ono r og jean miche l co r on o n h is 60 t h bj
play

I n h ono r og Jean-Miche l Co r on o n h is 60 t h bj rthda y My - PowerPoint PPT Presentation

Input-to-State Stability and Small-Gain Theorems for Parabolic PDEs Iasson Karafyllis and Miroslav Krstic I n h ono r og Jean-Miche l Co r on o n h is 60 t h bj rthda y My first connec:on with JMC: has contributed a paper in the special 60th


  1. Input-to-State Stability and Small-Gain Theorems for Parabolic PDEs Iasson Karafyllis and Miroslav Krstic I n h ono r og Jean-Miche l Co r on o n h is 60 t h bj rthda y

  2. My first connec:on with JMC: has contributed a paper in the special 60th anniversary issue Rafael Vazquez, U. de Sevilla

  3. (almost) no backstepping today!

  4. IS SS S I � x ( t ) f ( x ( t ), d ( t )) �

  5. IS SS S I � x ( t ) f ( x ( t ), d ( t )) � ISS: Input-to-State Stability (Sontag, 1989) � � � � � � � � x ( t ) x ( 0 ) , t sup d ( s ) � � 0 s t

  6. IS SS S I � x ( t ) f ( x ( t ), d ( t )) � ISS: Input-to-State Stability (Sontag, 1989) � � � � � � � � x ( t ) x ( 0 ) , t sup d ( s ) � � 0 s t � � Effect of Effect of initial condition disturbanc e

  7. Papers on ISS for PDEs Mazenc and Prieur (2011), “Strict Lyapunov functions for semilinear parabolic partial differential equations”, Mathematical Control and Related Fields . Prieur and Mazenc (2012), “ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws”, Math. Control, Signals, & Syst . Bribiesca Argomedo, Witrant, and Prieur (2012), “D1-input-to-state stability of a time- varying nonhomogeneous diffusive equation subject to boundary disturbances”, Am. Control Conf . Bribiesca Argomedo, Prieur, Witrant, and Bremond (2013), “A strict control Lyapunov function for a diffusion equation with time-varying distributed coefficients”, IEEE Trans. Automatic Control , 2013. Dashkovskiy and Mironchenko (2013), “Input-to-state stability of infinite-dimensional control systems”, Math. Control, Signals, & Syst . Mironchenko and Ito (2015), “Construction of Lyapunov Functions for Interconnected Parabolic Systems: An iISS Approach”, SICON . Mironchenko (2016), “Local input-to-state stability: Characterizations and counterexamples”, Syst. & Contr. Lett .

  8. Ch ha al ll le en ng ge e t to o I IS SS S f fo or r s sy ys st te em ms s C s wi it th h u un nb bo ou un nd de ed d i in np pu ut t o op pe er ra at to or rs w � � x Ax Bu ( B -unbounded) �

  9. Ch ha al ll le en ng ge e t to o I IS SS S f fo or r s sy ys st te em ms s C s wi it th h u un nb bo ou un nd de ed d i in np pu ut t o op pe er ra at to or rs w � � x Ax Bu ( B -unbounded) � t � � � � � � x ( t ) exp( A t ) x ( 0 ) exp( A ( t )) Bu ( ) d � 0

  10. Ch ha al ll le en ng ge e t to o I IS SS S f fo or r s sy ys st te em ms s C s wi it th h u un nb bo ou un nd de ed d i in np pu ut t o op pe er ra at to or rs w � � x Ax Bu ( B -unbounded) � t � � � � � � x ( t ) exp( A t ) x ( 0 ) exp( A ( t )) Bu ( ) d � 0 � � � Let exp( At ) M exp( t ) M � � � � x ( t ) M exp( t ) x ( 0 ) B sup u ( s ) � � s � 0 t

  11. Ch ha al ll le en ng ge e t to o I IS SS S f fo or r s sy ys st te em ms s C s wi it th h u un nb bo ou un nd de ed d i in np pu ut t o op pe er ra at to or rs w � � x Ax Bu ( B -unbounded) � t � � � � � � x ( t ) exp( A t ) x ( 0 ) exp( A ( t )) Bu ( ) d � 0 � � � Let exp( At ) M exp( t ) M � � � � x ( t ) M exp( t ) x ( 0 ) B sup u ( s ) � � s � 0 t Unbounded B (in boundary control) potentially makes ISS impossible.

  12. He ea at t e eq qu ua at ti io on n w wi it th h b bo ou un nd da ar ry y d di is st tu ur rb ba an nc ce es s H

  13. He ea at t e eq qu ua at ti io on n w wi it th h b bo ou un nd da ar ry y d di is st tu ur rb ba an nc ce es s H

  14. He ea at t e eq qu ua at ti io on n w wi it th h b bo ou un nd da ar ry y d di is st tu ur rb ba an nc ce es s H ISS with respect to boundary disturbances? No Lyapunov functional works.

  15. He ea at t e eq qu ua at ti io on n w wi it th h b bo ou un nd da ar ry y d di is st tu ur rb ba an nc ce es s H ISS with respect to boundary disturbances? No Lyapunov functional works. The transformation of boundary disturbances to distributed disturbances gives ISS with respect to boundary disturbances and their time derivatives . � � � � y ( t , z ) x ( t , z ) ( 1 z ) d ( t ) zd ( t ) 0 1

  16. Buggin’ me for about 10 years …

  17. OU UT TL LI IN NE E O Heat Equation

  18. OU UT TL LI IN NE E O Heat Equation Generalization

  19. OU UT TL LI IN NE E O Heat Equation Generalization Quasi-static Thermoelasticity

  20. OU UT TL LI IN NE E O Heat Equation Generalization Quasi-static Thermoelasticity Dynamic Output Feedback

  21. He ea at t e eq qu ua at ti io on n w wi it th h b bo ou un nd da ar ry y d di is st tu ur rb ba an nc ce es s H

  22. 1 2 2 � � � � Theorem: For every and ( d , d ) C ( ; ) for which the heat x [ 0 ] C ([ 0 , 1 ]) � 0 1 0 1 � � � � �� � equation has a unique solution x C ( [ 0 , 1 ]) C (( 0 , ) [ 0 , 1 ]) with � 2 � � � x [ t ] C ([ 0 , 1 ]) for all , the following estimates hold for all : t 0 t 0 � � 2 1 1 � � exp t 2 2 � � � x ( t , z ) dz x ( 0 , z ) dz � � 2 � � � 2 exp t L 2 2 n no or rm m ) ( L 0 0 � � 1 � � � max d ( s ) max d ( s ) � 0 1 3 � � � � � � 0 s t 0 s t

  23. max x ( t , z ) � � 0 z 1 � � 1 � � 2 � � � � � max exp ( 2 ) t max x ( 0 , z ) , max d ( s ) , max d ( s ) � � � � 0 1 � � � sin � � � � � � 0 z 1 0 s t 0 s t ∞ L ∞ n no or rm m ) ( L � � � for all ( 0 , / 2 )

  24. max x ( t , z ) � � 0 z 1 � � 1 � � 2 � � � � � max exp ( 2 ) t max x ( 0 , z ) , max d ( s ) , max d ( s ) � � � � 0 1 � � � sin � � � � � � 0 z 1 0 s t 0 s t ∞ L ∞ n no or rm m ) ( L � � � for all ( 0 , / 2 ) � � � For / 4 , we get � � � � 2 � t � � � � � � max x ( t , z ) 2 max exp max x ( 0 , z ) , max d ( s ) , max d ( s ) 0 1 � � � � 4 � � � � � � � � 0 z 1 0 z 1 0 s t 0 s t � � � �

  25. max x ( t , z ) � � 0 z 1 � � 1 � � 2 � � � � � max exp ( 2 ) t max x ( 0 , z ) , max d ( s ) , max d ( s ) � � � � 0 1 � � � sin � � � � � � 0 z 1 0 s t 0 s t ∞ L ∞ n no or rm m ) ( L � � � for all ( 0 , / 2 ) � � � For / 4 , we get � � � � 2 � t � � � � � � max x ( t , z ) 2 max exp max x ( 0 , z ) , max d ( s ) , max d ( s ) 0 1 � � � � 4 � � � � � � � � 0 z 1 0 z 1 0 s t 0 s t � � � � � � � Corollary: For / 2 , we get the maximum principle !! � � � max x ( t , z ) max � max x ( 0 , z ) , max d ( s ) , max d ( s ) � 0 1 � � � � � � � � � � 0 z 1 0 z 1 0 s t 0 s t

  26. Should not be viewed as a restriction!

  27. Analogous finite-dimensional case: Index-1 DAEs Example: � � � x ( t ) x ( t ) x ( t ) � 1 1 2 � � x ( t ) d ( t ) 0 2 2 � � � � � x ( t ) ( x ( t ), x ( t )) , d ( t ) 1 2 � Consistent initialization: x ( 0 ) d ( 0 ) 2

  28. Ge en ne er ra al li iz za at ti io on n G

  29. Ge en ne er ra al li iz za at ti io on n G in-domain

  30. ISS gains

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend