i k
play

I K **** Central Research Institute of Electric Power Industry a - PowerPoint PPT Presentation

1 Comparative Study Using Some Advanced Simulation Methods for Leaching of Cementitious Materials Over Ten Thousands of Years T. Torichigai*, K. Yokozeki*, T. Ishida**, K. Nakarai***, D. Sugiyama**** * KAJIMA corporation (JAPAN) ** The


  1. 1 Comparative Study Using Some Advanced Simulation Methods for Leaching of Cementitious Materials Over Ten Thousands of Years T. Torichigai*, K. Yokozeki*, T. Ishida**, K. Nakarai***, D. Sugiyama**** * KAJIMA corporation (JAPAN) ** The university of Tokyo *** Gunma university I K **** Central Research Institute of Electric Power Industry a R T

  2. 2 Background(1/3) Nuclear power generation covers 30 percents of power generation in Japan. Method for disposing radioactive waste is very important. RADIOACTIVE WASTE ○ High-level radioactive waste → Geological disposal (~-300m) ○ Low-level radioactive waste ・ Concrete Pit ( -10 ~ -5m ) I K a R ・ Sub-surface Disposal Underground T (-100 ~ -50m) (-100 ~ -50m)

  3. Background(2/3) 3 Cross sectional view of sub-surface disposal repository Backfill ( Concrete or Soil) Tunnel Low diffusion layer (Mortar) Waste packages Low permeability layer (Bentonite) Reinforced concrete pit Concrete pit : Maintaining stability of the repository I K a Mortar : Preventing radioactive nuclides to leak R T Bentonite : Preventing underground water to permeate to the repository

  4. Background(3/3) 4 Long-term durability (over 10,000 years) is demanded for this repository Evaluating long-term durability of concrete is necessary Mortar Ca 2+ Issues for cementitious material *Crack Ca 2+ Ca 2+ *Chemical degradation Ca 2+ *Calcium leaching to underground water Bentonite *Chemical reaction between I K a Concrete R mortar and bentonite T

  5. Target of this study 5 Simulation-code for evaluating calcium leaching for example… DuCOM, LIFE D.N.A., CCT-P ※ Method of simulation is different. Evaluating calcium leaching of cement hydrates by 3 codes. •What kind of deterioration will occur in sub-surface disposal repository? I K a • How fast is the deterioration speed? R T

  6. Evaluating method for calcium leaching 6 Numerical Simulations Dissolution/Precipitation of Hydrates � Thermodynamic database � Solid-liquid equilibrium for calcium & Mass Transfer � Advection � Diffusion � Electrical potential Experimental Models I K L=a x t 1/n n ; parameter (generally n=2) a R a ; constant parameter T

  7. Comparison of 3 codes 7 Chemical reactions Model of Code diffusion coefficient Cementitious material Bentonite ・ δ φ * Solid/liquid equilibrium for calcium Absorption of S ・ ・ = D D DuCOM eff Ω ion Ca ions * Solid/liquid equilibrium for calcium Absorption of LIFE (considering with Na, K) Ca ions ( ) = η ⋅ β ⋅ φ ⋅ i i D f D * precipitation of CaCO 3 ,Mg(OH) 2 , D.N.A. eff 0 Friedel’s salt. * Thermodynamic database Ion exchange * Incongruent dissolution of C-S-H reactions of n ⎛ ⎞ φ ( t ) CCT-P ・ ⎜ ⎟ = D ( t ) D ( 0 ) ⎜ ⎟ * Dissolution/ precipitation of Na, K, Ca and Mg φ ⎝ ⎠ ( 0 ) CaCO 3 I K a R T

  8. Simulation model 8 migration of Calcium ion 3.0m 1.0m 1.0m 6.0m Concrete Bento- Rock Mortar nite 2E-9 6.6E-13 2.8E-10 3.3E-13 Boundary line (constant) Diffusion coefficient(m 2 /s) Composition of underground water (mmol/l) Ca 2+ Na + K + Mg 2+ 2- Cl - 2- SO 4 CO 3 pH I K a R 0.13 0.77 0.03 0.16 0.14 0.44 0.62 8.6 T

  9. Conditions 9 Mix proportions of concrete and mortar Unit Quantity (kg/m 3 ) W/B Air ( % ) ( % ) W LPC FA LSP S G Concrete 45 2.5 160 249 107 249 832 786 Mortar 45 2.5 230 358 153 307 1223 - Cement hydrates using in calculation DuCOM ; Portlandite, C-S-H LIFE D.N.A. ; Portrandite, C-S-H, Calcite, Brucite, Friedel’s salt, NaOH, KOH I K a CCT-P ; All hydrates in database R T

  10. Simulation result of calcium leaching rate at 50,000 years 10 Rock Concrete Bentonite 100 %) DuCOM 80 Calcium leaching rate( LIFE D.N.A. CCT- P 60 40 20 0 decrease of Leaching depth - 20 Precipitations diffusion coefficient - 40 2.5 3.0 3.5 4.0 4.5 Distance from boundary line( m) Faced to Bentonite I K Leaching depth : DuCOM > LIFE D.N.A. > CCT-P a R T Faced to Rock Leaching depth : DuCOM > CCT-P > LIFE D.N.A.

  11. Evaluating for calcium leaching speed 11 Calcium leaching speed of concrete (faced to rock) 600 DuCOM 500 LIFE D.N.A. leaching depth(mm) CCT- P 400 300 200 100 0 0 50 100 150 200 250 I K a time( √ year) R T Leaching speed : DuCOM > LIFE D.N.A. > CCT-P

  12. Evaluating for calcium leaching speed 12 Calcium leaching speed of concrete (faced to rock & bentonite) 600 600 DuCOM 500 500 LIFE D.N.A. leaching depth(mm) leaching depth(mm) CCT- P 400 400 DuCOM Na+,K+ from Bentonite LIFE D.N.A. 300 300 control Calcium leaching CCT- P from concrete 200 200 100 100 0 0 0 50 100 150 200 250 0 50 100 150 200 250 I K a time( time( √ year) √ year) R T

  13. Degradation process of cement hydrates 13 CH leaching CSH leaching Concrete Concrete Bento Rock DuCOM nite D increase D increase Precipitate (Calcite, Brucite, Friedel’s salt ) Bento LIFE Rock nite D.N.A. D increase D increase D decrease Precipitate(Calcite) Na + , K + Bento CCT-P I K Rock a nite R T D increase D increase D;diffusion coefficient

  14. Changing in diffusion coefficient 14 Dissolution/precipitation of cement hydrates ... Porosity increase/decrease ... Diffusion coefficient increase/decrease 2 / s) 1E- 10 ・ δ φ S DuCOM ・ ・ = Diffusion coefficient(m D D eff Ω ion LIFE D.N.A. CCT- P 1E- 11 ( ) = η ⋅ β ⋅ φ ⋅ i i D f D eff 0 1E- 12 n ⎛ ⎞ φ ( t ) ・ ⎜ ⎟ = D ( t ) D ( 0 ) ⎜ ⎟ φ ⎝ ⎠ ( 0 ) 1E- 13 I K a 0 25 50 75 100 R Calcium leaching rate(% ) T

  15. Influential factor for Calcium leaching 15 • Changing in diffusion coefficient • Chemical reaction (especially, precipitation) • Degradation process of cement hydrate is different I K a R • Calcium leaching speed is different T

  16. Conclusions 16 Evaluating calcium leaching of cement hydrates by 3 codes. •What kind of deterioration will occur in sub-surface disposal repository? � Portlandite & C-S-H leach from cementitious material � Secondary minerals would precipitate � Degradation process is different in 3 codes • How fast is the deterioration speed? � Calcium leaching speed is DuCOM > LIFE D.N.A.>CCT-P � Calcium leaching depth at 50,000 years are 130~500mm � The reason why simulation result is different… Changing in diffusion coefficient I K a Chemical reaction (especially, precipitation) R T

  17. 17 Appendix I K a R T

  18. DuCOM 18 Dissolution/Precipitation of Hydrates Calcium liquid/Solid equilibrium Mass Transfer � Transport by solution flow � Transport by diffusion ・ δ φ S ・ ・ = D D eff Ω ion I K a R T Calcium leaching = Porosity increase = D increase

  19. LIFE D.N.A. 19 Dissolution/Precipitation of Hydrates Calcium liquid/Solid equilibrium Mass Transfer C P0Ca � Transport by solution flow ① Ca 2+ Concentration in Solid C p1Ca =A Cp1 ・C P0Ca Ca(OH) 2 � Transport by diffusion ② � Electric force C P2Ca C- S- H ( ) ③ = η ⋅ β ⋅ φ ⋅ i i 1 / n ⎛ ⎞ C D f D C ⎜ ⎟ = ・ pCa Ca A ⎜ ⎟ eff 0 cp 1 ⎝ ⎠ C C p 0 Ca 0 Ca C 0Ca C 1Ca Ca 2+ Concentration in liquid ions ( ) ・ φ = + φ φ φ 2 f 0.001 0.07 {1.8( - 0.18) H( - 0.18) I K − ⋅ a 1 c G R β = 1 ⋅ vol P T − ⋅ vol d S Transition vol zone

  20. CCT-P 20 Dissolution/Precipitation of Hydrates � the thermodynamic database Mass Transfer (Chemical reaction code HARPHRQ) � Transport by solution flow � Incongruent dissolution of C-S-H � Transport by diffusion − − − i 1 i 1 i 1 x x x = − + log K log K log( ) i + 0 i + + n 1 x 1 x 1 x ⎛ ⎞ φ ( ) t ・ ⎜ ⎟ = − − D ( t ) D ( 0 ) ⎧ ⎫ ⎜ ⎟ x 1 1 x x φ + + 2 ⎝ ⎠ ( 0 ) ⎨ ⎬ A A A ( ) 0 i 1 i + 2 i + + ⎩ ⎭ 2 1 x 1 x ( 1 x ) logK sp of C-S-H gel depend on the rate of Ca/Si I K a R T

  21. Investigation result of the old structures 21 60 Lagerblad(2001) Yokozeki(2002) 50 Saito et al.(2003) Ca leaching depth (mm) : Y=2.42√ t Leaching depth at 50,000years=541mm 40 : Y=0.94√ t Leaching depth at 50,000years=210mm 30 The most deteriorated data 20 Average of all data 10 0 0 20 40 60 80 100 120 Time (years) I K a R Simulation results = 130 ~ 500mm at 50,000 years T

  22. Comparison DuCOM to LIFE D.N.A. 22 1.0 C P0Ca rate of Ca concentration in 0.8 ① ① Ca 2+ Concentration in Solid Ca(OH) 2 DuCOM solid/ initial ② ② 0.6 LIFE DNA C- S- H (model change) 0.4 OPC ③ Model(OPC) 0.2 LPCFA Model(LPCFA) 0.0 C 1Ca C 0Ca C 0Ca 0 5 10 15 20 25 Ca 2+ Concentration in liquid Ca concentration in liquid( mmol/ l) <Different type of cement> <affect Na ions & K ions> 250 1,000year 200 Leaching depth(mm) 200 10,000year 150 97.5 100 I K 42.5 a 50 R T 0 LIFE D.N.A. LIFE D.N.A. DuCOM (Model change)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend