how fast does a passive scalar decay
play

How Fast Does a Passive Scalar Decay? (Decay of Chaotically Advected - PowerPoint PPT Presentation

How Fast Does a Passive Scalar Decay? (Decay of Chaotically Advected Passive Scalars in the Zero Diffusivity Limit) Yue-Kin Tsang Courant Institute of Mathematical Sciences New York University Thomas M. Antonsen, Jr. and Edward Ott University


  1. How Fast Does a Passive Scalar Decay? (Decay of Chaotically Advected Passive Scalars in the Zero Diffusivity Limit) Yue-Kin Tsang Courant Institute of Mathematical Sciences New York University Thomas M. Antonsen, Jr. and Edward Ott University of Maryland, College Park

  2. Decay of Variance ∂φ u · ∇ φ = κ ∇ 2 φ ∂t + � ∇ · � u = 0 (incompressible) � 2 π � φ ( � x, 0) ∼ sin ( x + y ) L D � u ( � x, t ) : doubly periodic with period L f Mean is conserved: d � φ � = 0 dt � φ 2 � ( take � φ � = 0 ) Vairance =

  3. Decay of Variance � φ 2 � d |∇ φ | 2 � � = − 2 κ dt variance decay due to diffusion ( κ � = 0 ) decay rate increases with |∇ φ |

  4. Decay of Variance � φ 2 � d |∇ φ | 2 � � = − 2 κ dt variance decay due to diffusion ( κ � = 0 ) decay rate increases with |∇ φ | stirring/stretching of fluid ⇒ filaments ⇒ large |∇ φ | ⇒ enhanced diffusion ⇒ faster mixing/variance decay

  5. Exponential Decay Rate γ 0 We are interested in long time behavior of φ as κ → 0 . numerical simulations and experiments show: φ 2 � ∼ e − γ ( κ ) t � some numerical evidence support the prediction: κ → 0 + γ ( κ ) ≡ γ 0 lim Question: Given a certain flow � u ( � x, t ) , can we predict the decay rate γ 0 ? 1. R.T. Pierrehumbert, Chaos, Solitons and Fractals 4 , 1091 (1994) 2. Voth el at. , Phys. Fluids 15 , 2560 (2003)

  6. Wave Packet Model x j ( t )) = A j ( t ) sin[ � ϕ j ( � k j ( t ) · � x j ( t ) + ϑ j ( t )] ϕ 2 � � ω j ( t ) = j � k j ( t ) � x j ( t ) � k j (0) x j (0) �

  7. Wave Packet Model x j ( t )) = A j ( t ) sin[ � ϕ j ( � k j ( t ) · � x j ( t ) + ϑ j ( t )] ϕ 2 � � ω j ( t ) = j � k j ( t ) � x j ( t ) � φ ( � x, t ) = ϕ j � k j (0) x j (0) � � � φ 2 � C ( t ) ≡ = ω j ( t )

  8. Wave Packet Model x j ( t )) = A j ( t ) sin[ � ϕ j ( � k j ( t ) · � x j ( t ) + ϑ j ( t )] ϕ 2 � � ω j ( t ) = j � k j ( t ) � x j ( t ) � φ ( � x, t ) = ϕ j � k j (0) x j (0) � � � φ 2 � C ( t ) ≡ = ω j ( t ) dω j 2 ω j dt = − 2 κk j � k j ( t ) is determined by the stretching of fluid elements induced by the smooth velocity field � u

  9. Characterizing Stretching x(t) Along a fluid trajectory, δ d� x ( t ) = � u ( � x ( t ) , t ) dt δ x(0) Finite-time Lyapunov Exponent, h x (0) | e ht | δ� x ( t ) | = | δ� Probability Distribution Function for h , P ( h t ) P ( h t ) ∼ exp[ − tG ( h )] (Reference: R.S. Ellis, “Entropy, Large Deviations and Statistical Mechanics”, 1985)

  10. P ( h t ) and G ( h ) 2 t=1 t=5 t=5 t=10 3 t=10 t=15 t=15 t=20 t=20 P(h | t) 2 G(h) 1 1 0 0 −1.0 0.0 1.0 2.0 −1.0 −0.5 0.0 0.5 1.0 1.5 h h

  11. Wave Packet Model x j ( t )) = A j ( t ) sin[ � ϕ j ( � k j ( t ) · � x j ( t ) + ϑ j ( t )] ϕ 2 � � ω j ( t ) = j � k j ( t ) � φ ( � x, t ) = ϕ j � x j ( t ) � � φ 2 � � k j (0) C ( t ) ≡ = ω j ( t ) x j (0) � dω j 2 ω j dt = − 2 κk j | � k j ( t ) |≈ | � k j (0) | cos θ e h j t

  12. Wave Packet Model x j ( t )) = A j ( t ) sin[ � ϕ j ( � k j ( t ) · � x j ( t ) + ϑ j ( t )] ϕ 2 � � ω j ( t ) = j � k j ( t ) � φ ( � x, t ) = ϕ j � x j ( t ) � � φ 2 � � k j (0) C ( t ) ≡ = ω j ( t ) x j (0) � dω j 2 ω j dt = − 2 κk j | � k j ( t ) | ≈ | � k j (0) | cos θ e h j t γ 0 = min h [ h + G ( h )] Antonsen el at. , Phys. Fluids 8 , 3094 (1996)

  13. Comparison with Numerics Flow Model: T = 1 , U = π ( L f = L D = 2 π )  U cos(2 π y + α n )ˆ nT ≤ t < ( n + 1 i , 2 ) T   L f  u ( � � x, t )= U cos(2 π x + β n ) ˆ j , ( n + 1 2 ) T ≤ t < ( n +1) T    L f 0.20 0.18 0.16 0.185 0.14 0.180 0.12 0.175 γ(κ) 0.10 0.170 0.08 0.06 0.165 0.04 0.160 0.02 0 -8 -8 -8 -8 -8 1 × 10 2 × 10 3 × 10 4 × 10 5 × 10 0.00 0 -8 -8 -8 -8 -8 1 × 10 2 × 10 3 × 10 4 × 10 5 × 10 κ T/L 2 D

  14. Laboratory Experiment G. A. Voth, T.C. Saint, Greg Dobler, and J.P . Gollub, Phys. Fluids 15 , 2560 (2003)

  15. Laboratory Experiment G. A. Voth, T.C. Saint, Greg Dobler, and J.P . Gollub, Phys. Fluids 15 , 2560 (2003) measured decay rate is 10 times smaller than predicted γ 0 !! Reason: the ratio L D /L f is an important factor

  16. Variance Damping Mechanisms L D ≈ L f decay rate controlled by processes at small length scales (large k ) γ 0 predicted by Lagrangian stretching theory (short wavelength mechanism) L D ≫ L f variance being “leaked” out of the longest wavelength mode (smallest k ) decay rate limited by spatial diffusion on the large scales (long wavelength mechanism) (D.R. Fereday, P .H. Haynes, A. Wonhas and J.C. Vassilicos, Phys. Rev. E 65 035301(R), (2002))

  17. Wavenumber Spectrum (2 π ) 2 δ ( k − | k ′ | ) | ˜ φ ( k ′ , t ) | 2 � d k ′ ∼ S ( k ) e − γ ( κ ) t S ( k, t ) = L 2 D “strange eigenmode” S ( k ) = � S ( k, t ) /C ( t ) � t S(k) Local stretching theory operating at small scales ln k 1/L D k d

  18. L D = L f for each time period t > 20 T , remove all Fourier modes of φ with | k x | and | k y | less than k filter = a (2 π/L D ) S(k) Local stretching theory operating at small scales ln k 1/L D k d k filter

  19. L D = L f decay rate (controlled by large k processes) is not affected by this filtering (fixed k d /k filter ) 0.25 0 0.24 0.23 -5 0.22 0.21 γ(κ) ln C(t) 0.20 -10 κ T/L D 2 0.19 -7 ( a=1 ) 2.78 x 10 a=0 0.18 a=1 -8 ( a=2 ) 6.95 x 10 a=2 -15 0.17 -8 ( a=4 ) a=4 1.74 x 10 a=8 -9 ( a=8 ) 4.35 x 10 0.16 a=16 -9 ( a=16 ) a=32 1.09 x 10 0.15 -15 -14 -13 -12 -11 -10 -20 1/2 0 25 50 75 100 log 2 ( κ T/L ) 2 t/T D

  20. L D = ML f ( M > 1) at each time step n , remove all but the lowest k mode ( i.e. remove everything that leaks out of the lowest k mode) decay rate = rate of "leaking" from the lowest k mode S(k) Local stretching theory operating at small scales ln k 1/L D k d

  21. L D = ML f ( M > 1 ) φ n +1 = [ J 0 ( η )] 2 φ n where η = πUT/ ( ML f ) leaking rate = − ln[ J 0 ( η )] 4 /T (dashed line) 0.20 0.15 γ(κ) 0.10 0.05 0.00 1 2 3 4 5 6 7 8 M

  22. Upper Bound on γ 0 � ∞ S ( k ) e − γ 0 t = dk ′ S ( k ′ ) δ ( k − k ′ | cos θ | e ht ) � � h,θ 0 Assuming S ( k ) ∼ k − ψ (can generalize to anisotropic case), one can show γ 0 = min h [ h + G ( h ) − | ψ | h ] Two consequences: γ 0 < min h [ h + G ( h )] � G ( h ) − γ 0 � ψ = 1 + min h h

  23. Wavenumber Spectra Exponent ψ short wavelength mechanism ⇒ flat spectra long wavelength mechanism ⇒ power-law spectra M = 1 M > 1 -3 0 -9 2 M=2 κ T/L =1.09 x 10 D -1 -4 -2 -9 κ T/L =4.35 x 10 2 D M=4 -5 -3 (k) ] (k) ] -4 -8 κ T/L =1.74 x 10 2 -6 D avg avg -5 M=6 ln [ S ln [ S -7 -6 -8 2 κ T/L =6.95 x 10 D -7 -8 -8 M=8 -9 -9 -10 -10 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 ln k ln k

  24. Summary For L D ≈ L f , short wavelength mechanism applies and γ 0 can be predicted using local stretching theory For L D ≫ L f , long wavelength mechanism applies, γ 0 limited by the decay of the longest wavelength mode Decay rate predicted by the local stretching theory provides an upper bound on γ 0 Long wavelength mechanism gives a power-law power spectrum, k − ψ with ψ > 0 , short wavelength mechanism gives a flat power spectrum ( ψ = 0) Tsang, Antonsen and Ott, Phys. Rev. E 71 , 066301 (2005)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend