homological mirror symmetry
play

Homological Mirror Symmetry for Blowups of CP 2 Denis Auroux (MIT) - PowerPoint PPT Presentation

Homological Mirror Symmetry for Blowups of CP 2 Denis Auroux (MIT) (joint work with L. Katzarkov, D. Orlov) (after ideas of Kontsevich, Seidel, Hori, Vafa, . . . ) See: math.AG/0404281, math.AG/0506166 Mirror Symmetry Complex manifolds: ( X, J


  1. Homological Mirror Symmetry for Blowups of CP 2 Denis Auroux (MIT) (joint work with L. Katzarkov, D. Orlov) (after ideas of Kontsevich, Seidel, Hori, Vafa, . . . ) See: math.AG/0404281, math.AG/0506166

  2. Mirror Symmetry Complex manifolds: ( X, J ) locally ≃ ( C n , i ) Look at complex analytic cycles + holom. vector bundles, or better: coherent sheaves Intersection theory = Morphisms and extensions of sheaves. Symplectic manifolds: ( Y, ω ) locally ≃ ( R 2 n , � dx i ∧ dy i ) Look at Lagrangian submanifolds (+ flat unitary bundles): L n ⊂ Y 2 n with ω | L = 0 (locally ≃ R n ⊂ R 2 n ; in dim R 2, any embedded curve!) Intersection theory (with quantum corrections) = Floer homology (discard intersections that cancel by Hamiltonian isotopy) Mirror symmetry: D-branes = boundary conditions for open strings. Homological mirror symmetry (Kontsevich): at the level of derived categories, A-branes = Lagrangian submanifolds, B-branes = coherent sheaves. 1

  3. HMS Conjecture: Calabi-Yau case X, Y Calabi-Yau ( c 1 = 0) mirror pair ⇒ D b Coh ( X ) ≃ D F ( Y ) ≃ D b Coh ( Y ) D F ( X ) Coh ( X ) = category of coherent sheaves on X complex manifold. D b = bounded derived category: Objects = complexes 0 → · · · → E i d i → E i +1 → · · · → 0. Morphisms = morphisms of complexes (up to homotopy, + inverses of quasi-isoms) F ( Y ) = Fukaya A ∞ -category of ( Y, ω ). Roughly: Objects = (some) Lagrangian submanifolds (+ flat unitary bundles) Morphisms: Hom( L, L ′ ) = CF ∗ ( L, L ′ ) = C | L ∩ L ′ | if L ⋔ L ′ . (or � Hom( E p , E ′ p )) (Floer complex, graded by Maslov index) with: differential d = m 1 ; product m 2 (composition; only associative up to homotopy); and higher products ( m k ) k ≥ 3 (related by A ∞ -equations). 2

  4. Fukaya categories Hom( L, L ′ ) = CF ∗ ( L, L ′ ) = C | L ∩ L ′ | if L ⋔ L ′ . Hom( E p , E ′ (or: � p )) p ∈ L ∩ L ′ • Differential d = m 1 : Hom( L 0 , L 1 ) → Hom( L 0 , L 1 )[1] � � D 2 u ∗ ω ) � m 1 ( p ) , q � = ± exp( − L 1 u ∈M ( p,q ) p q counts pseudo-holomorphic maps Y L 0 (in dim R 2: immersed discs with convex corners) 2 D • Product m 2 : Hom( L 0 , L 1 ) ⊗ Hom( L 1 , L 2 ) → Hom( L 0 , L 2 ) q L 1 L 2 � m 2 ( p, q ) , r � counts pseudo-holomorphic maps p r Y L 0 2 D • Higher products m k : Hom( L 0 , L 1 ) ⊗ · · · ⊗ Hom( L k − 1 , L k ) → Hom( L 0 , L k )[2 − k ] p k � m k ( p 1 , . . . , p k ) , q � counts pseudo-holomorphic maps L L k 1 Y p q L 0 1 D 2 3

  5. HMS Conjecture: Fano case � Y (non-compact) manifold M.S. X Fano ( c 1 ( TX ) > 0) ← → “Landau-Ginzburg model” W : Y → C “superpotential” D b Coh ( X ) ≃ D b Lag ( W ) D π F ( X ) ≃ D b Sing ( W ) D b Lag ( W ) (Lagrangians) and D b Sing ( W ) (sheaves) = symplectic and complex geometries of singularities of W . If W : Y → C is a Morse function (isolated non-degenerate crit. pts): L i ⊂ Σ 0 Lagrangian sphere = vanishing cycle associated to γ i (collapses to crit. pt. by parallel transport) L Seidel: Lag ( W, { γ i } ) finite, directed A ∞ -category. i Y Σ 0 Objects: L 1 , . . . , L r .  CF ∗ ( L i , L j ) = C | L i ∩ L j | w if i < j   γ  1 λ 1 Hom( L i , L j ) = C · Id if i = j λ 0 C  γ λ 0 if i > j  r r  Products: ( m k ) k ≥ 1 = Floer theory for Lagrangians ⊂ Σ 0 . 4

  6. Categories of Lagrangian vanishing cycles L i ⊂ Σ 0 Lagrangian sphere = vanishing cycle associated to γ i Seidel: Lag ( W, { γ i } ) finite, directed A ∞ -category. L i Y Objects: L 1 , . . . , L r . Σ 0  CF ∗ ( L i , L j ) = C | L i ∩ L j | if i < j  w   Hom( L i , L j ) = γ C · Id if i = j 1 λ 1 λ 0  0 if i > j  C  γ λ r r Products: ( m k ) k ≥ 1 = Floer theory for Lagrangians ⊂ Σ 0 . • m k : Hom( L i 0 , L i 1 ) ⊗ · · · ⊗ Hom( L i k − 1 , L i k ) → Hom( L i 0 , L i k )[2 − k ] is trivial unless i 0 < · · · < i k . • m k counts discs in Σ 0 with boundary in � L i , with coefficients ± exp( − � D 2 u ∗ ω ). • in our case π 2 (Σ 0 ) = 0, π 2 (Σ 0 , L i ) = 0, so no bubbling. Remarks: • � L 1 , . . . , L r � = exceptional collection generating D b Lag . • objects also represent Lefschetz thimbles (Lagrangian discs bounded by L i , fibering above γ i ) Theorem. (Seidel) Changing { γ i } affects Lag ( W, { γ i } ) by mutations; D b Lag ( W ) depends only on W : ( Y, ω ) → C . 5

  7. Example 1: weighted projective planes (Auroux-Katzarkov-Orlov, math.AG/0404281; cf. work of Seidel on CP 2 ) X = CP 2 ( a, b, c ) = ( C 3 − { 0 } ) / ( x, y, z ) ∼ ( t a x, t b y, t c z ) (Fano orbifold). D b Coh ( X ) has an exceptional collection O , O (1) , . . . , O ( N − 1) ( N = a + b + c ) (Homogeneous coords. x, y, z are sections of O ( a ) , O ( b ) , O ( c )) Hom( O ( i ) , O ( j )) ≃ deg. ( j − i ) part of symmetric algebra C [ x, y, z ] (degs. a, b, c ) All in degree 0 (no Ext’s); composition = obvious. Mirror: Y = { x a y b z c = 1 } ⊂ ( C ∗ ) 3 , W = x + y + z . ( Y ≃ ( C ∗ ) 2 if gcd ( a, b, c ) = 1) Z /N ( N = a + b + c ) acts by diagonal mult., the N crit. pts. are an orbit; complex conjugation. We choose ω invariant under Z /N and complex conj. ( ⇒ [ ω ] = 0 exact) Theorem. D b Lag ( W ) ≃ D b Coh ( X ) . (this should extend to weighted projective spaces in all dimensions; for technical reasons we only have a partial argument when dim C ≥ 3). 6

  8. Non-commutative deformations Y = { x a y b z c = 1 } ⊂ ( C ∗ ) 3 , W = x + y + z , X = CP 2 ( a, b, c ); Theorem. If ω is exact, then D b Lag ( W ) ≃ D b Coh ( X ) . Can deform Lag ( W ) by changing [ ω ] (and introducing a B -field). ( S 1 × S 1 = generator of H 2 ( Y, Z ) ≃ Z ) � Choose t ∈ C , and take S 1 × S 1 [ B + iω ] = t → deformed category D b Lag ( W ) t . This corresponds to a non-commutative deformation X t of X : deform weighted polynomial algebra C [ x, y, z ] to with µ a 1 µ b 2 µ c 3 = e it yz = µ 1 zy, zx = µ 2 xz, xy = µ 3 yx, Theorem. ∀ t ∈ C , D b Lag ( W ) t ≃ D b Coh ( X ) t . 7

  9. Example 2: Del Pezzo surfaces (Auroux-Katzarkov-Orlov, math.AG/0506166) X = CP 2 blown up at k ≤ 9 points, − K X ample (or more generally, nef). D b Coh ( X ) has an exceptional collection O , π ∗ T P 2 ( − 1) , π ∗ O P 2 (1) , O E 1 , . . . , O E k > > 2 > ❍ ❍ ❍ ❍ ✟ ✟ ✟ ✟ ✉ ✉ ✉ ✉ 3 3 O O E i T (-1) O (1) Compositions encode coordinates of blown up points. For generic blowups, Hom( O E i , O E j ) = 0. Infinitely close blowups give pairs of morphisms in deg. 0 and 1 (recover O C (-2-curve) as a cone). Mirror: mirror to CP 2 compactifies to M = resolution of { XY Z = T 3 } ⊂ CP 3 , with elliptic fibration W = T − 1 ( X + Y + Z ) : M → C ∪ {∞} . W is Morse, with 3 crit. pts. in {| W | < ∞} ; fiber at infinity has 9 components. Mirror to X = deform ( M, W ) to bring k of the crit. pts. over ∞ into finite part. Get an elliptic fibration over {| W k | < ∞} : W k : M k → C , with 3 + k sing. fibers. (symplectic form to be specified later) Theorem. For suitable choice of [ B + iω ] , D Lag ( W k ) ≃ D b Coh ( X k ) . 8

  10. The vanishing cycles of W k x 1 ✲ ✲ r ¯ x ◗◗◗◗◗◗◗◗◗◗◗◗ r ✑ ❆ ✁ ✁ ✁ ✁ ✑ ❆ ✁ ✁ ✁ ✁ ❆ ❆ ✑ ✁ ✁ ✑ ✁ ✁ ❆ ❆ L 0 + ✁ ✁ ✑ ✑ r − ✁ ✁ ❆ ❆ ✁ ✁ z 0 ✑ ✑ ✁ ✁ ❆ ❆ ✁ ✁ ¯ ✑ ✁ ✁ y r y 1 L 1 ❆ ✑ ✁ ✁ ❆ r ✁ ✁ ❆ ❆ ✑ ✁ ✁ ✑ ✁ ✁ ❆ ❆ ✁ ✁ ✑ ✑ ◗ ✁ ✁ L 2 + ❆ ❆ ✁ ✁ ◗◗◗◗◗◗◗◗◗◗◗◗ r − r x 0 x 0 ✑ ✑ ✁ ✁ ❆ ❆ ✁ ✁ ✑ ❯ ✁ ✁ ✑ ❯ ❆ ❆ ✁ ✁ r z 1 ✁ ✁ ✑ ❆ ❆ ✁ ✁ ✑ r ¯ L 3+ j ✁ ✁ z ❆ ❆ ✁ ✁ ✑ ✑ ✁ ✁ ❆ ❆ ✁ ✁ ✁ ✁ ✑ + ✑ ❆ r − ❆ ✁ ✁ ✁ ✁ ✑ ✑ y 0 ❆ ❆ ✁ ✁ ✁ ✁ ✑ ❆ ❆ ❆ ✑ ✁ ✁ ◗ ✲ ✲ ✁ ✁ ❆ r r ¯ x x 1 Symplectic deformation parameters: [ B + iω ] ∈ H 2 ( M k , C ) : → cubic curve CP 2 ⊃ E ≃ C / ( Z + τ Z ) • Area of fiber: τ = 1 � Σ ( B + iω ) ← 2 π (all blowups are at points of E ; think of E as zero set of β ∈ H 0 (Λ 2 T ).) • Area of C ( ∂C = L 0 + L 1 + L 2 ) : t = 1 � C ( B + iω ) ← → σ ∈ Pic 0 ( E ) 2 π (same parameter as in Example 1; commutative deformations correspond to t = 0; takes values in C / ( Z + τ Z ).) 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend