homological mirror symmetry for fano surfaces
play

Homological Mirror Symmetry for Fano Surfaces Denis Auroux (joint - PDF document

Homological Mirror Symmetry for Fano Surfaces Denis Auroux (joint work with L. Katzarkov, D. Orlov) (after ideas of Kontsevich, Seidel, Hori, Vafa, . . . ) DONT PANIC ! Mirror Symmetry Complex manifolds: ( X, J ) locally ( C n , i )


  1. Homological Mirror Symmetry for Fano Surfaces Denis Auroux (joint work with L. Katzarkov, D. Orlov) (after ideas of Kontsevich, Seidel, Hori, Vafa, . . . )

  2. DON’T PANIC !

  3. Mirror Symmetry Complex manifolds: ( X, J ) locally ≃ ( C n , i ) Look at complex analytic subvarieties + holom. vector bun- dles, or better: coherent sheaves (cokernels of morphisms of holom. bundles with finite resolution) Intersection theory = Morphisms and extensions of sheaves. Symplectic manifolds: ( Y, ω ) locally ≃ ( R 2 n , � dx i ∧ dy i ) (in dim R 2, any orientable surface!) Look at Lagrangian submanifolds: L n ⊂ Y 2 n with ω | L = 0 (locally ≃ R n ⊂ R 2 n ) (in dim R 2, all embedded curves!) Intersection theory = Floer homology (discard intersections that cancel by Hamiltonian isotopy) Mirror symmetry: Duality between type II A and II B string theories. D-branes = boundary conditions for open strings. Homological mirror symmetry (Kontsevich, ...): A-branes = Lagrangian submanifolds, B-branes = coherent sheaves. only in a weaker sense: derived categories. 1

  4. Homological Mirror Symmetry Conjecture: Calabi-Yau case Roughly: X, Y Calabi-Yau ( c 1 = 0) mirror pair ⇒ D b Coh ( X ) ≃ D F ( Y ) ≃ D b Coh ( Y ) D F ( X ) Coh ( X ) = category of coherent sheaves on X complex mfld. D b = bounded derived category Objects = complexes 0 → · · · → E i d i → E i +1 → · · · → 0. � morphisms of complexes Morphisms = +formal inverses of quasi-isoms F ( Y ) = Fukaya A ∞ -category of ( Y, ω ). Roughly: Objects = (some) Lagrangian submanifolds (+flat bundles) Morphisms: Hom( L, L ′ ) = CF ∗ ( L, L ′ ) = C | L ∩ L ′ | if L ⋔ L ′ . (Floer complex, graded by Maslov index) • Differential d = m 1 : Hom( L 0 , L 1 ) → Hom( L 0 , L 1 )[1] • Product m 2 : Hom( L 0 , L 1 ) ⊗ Hom( L 1 , L 2 ) → Hom( L 0 , L 2 ) (associative up to homotopy) • Higher products m k : Hom( L 0 , L 1 ) ⊗· · ·⊗ Hom( L k − 1 , L k ) → Hom( L 0 , L k )[2 − k ] (related by A ∞ -equations) 2

  5. Fukaya categories F ( Y ) = Fukaya A ∞ -category of ( Y, ω ). Objects = (some) Lagrangian submanifolds (+flat bundles) Morphisms: Hom( L, L ′ ) = CF ∗ ( L, L ′ ) = C | L ∩ L ′ | if L ⋔ L ′ . (Floer complex, graded by Maslov index) • Differential d = m 1 : Hom( L 0 , L 1 ) → Hom( L 0 , L 1 )[1] � m 1 ( p ) , q � counts pseudo-holomorphic maps (in dim R 2, same as immersed discs with convex corners) L 1 p q Y L 0 2 D • Product m 2 : Hom( L 0 , L 1 ) ⊗ Hom( L 1 , L 2 ) → Hom( L 0 , L 2 ) � m 2 ( p, q ) , r � counts pseudo-holomorphic maps q L 1 L 2 p r Y L 0 2 D • Higher products m k : Hom( L 0 , L 1 ) ⊗ · · · ⊗ Hom( L k − 1 , L k ) → Hom( L 0 , L k )[2 − k ] � m k ( p 1 , . . . , p k ) , q � counts pseudo-holomorphic maps p k L L k 1 Y p q L 0 1 D 2 3

  6. Homological Mirror Symmetry Conjecture: Fano case M.S. X Fano ( c 1 ( TX ) > 0) ← → “Landau-Ginzburg model” � Y (non-compact) manifold w : Y → C “superpotential” D b Coh ( X ) ≃ D F ( w ) D F ( X ) ≃ D Sing ( w ) D F ( w ) (Lagrangians) and D Sing ( w ) (sheaves) = symplectic and complex geometries of singularities of w . If w : Y → C Lefschetz fibration (isolated non-deg. crit. pts): L i ⊂ Σ 0 Lagrangian sphere = vanishing cycle associated to γ i L i Y (collapses to crit. pt. by // transport) Σ 0 Seidel: F ( w, { γ i } ) w finite, directed A ∞ -category. γ 1 λ 1 λ 0 C Objects: L 1 , . . . , L r . γ λ r r  CF ∗ ( L i , L j ) = C | L i ∩ L j | if i < j   Hom( L i , L j ) = C · Id if i = j  0 if i > j  Products: ( m k ) k ≥ 1 = Floer theory for Lagrangians ⊂ Σ 0 . 4

  7. Fukaya-Seidel categories L i ⊂ Σ 0 Lagrangian sphere = vanishing cycle associated to γ i L i Y (collapses to crit. pt. by // transport) Σ 0 Seidel: F ( w, { γ i } ) w finite, directed A ∞ -category. γ 1 λ 1 λ 0 C Objects: L 1 , . . . , L r . γ λ r r  CF ∗ ( L i , L j ) = C | L i ∩ L j | if i < j   Hom( L i , L j ) = C · Id if i = j  0 if i > j  Products: ( m k ) k ≥ 1 = Floer theory for Lagrangians ⊂ Σ 0 . m k : Hom( L i 0 , L i 1 ) ⊗ · · · ⊗ Hom( L i k − 1 , L i k ) → Hom( L i 0 , L i k )[2 − k ] – trivial unless i 0 < · · · < i k – count discs in Σ 0 w/ boundary in � L i (Floer theory) Remarks: • � L 1 , . . . , L r � = exceptional collection generating D F . • objects are also Lefschetz thimbles (discs bounded by L i ) • in our case, no technical issues such as bubbling etc. D 2 u ∗ ω ) � • coefficient ring: R = C , count w/ coef. ± exp( − Theorem. (Seidel) Changing { γ i } affects F ( w, { γ i } ) by mutations; D F ( w ) depends only on w : ( Y, ω ) → C . 5

  8. Example: weighted projective planes (cf. work of Seidel on CP 2 ) X = CP 2 ( a, b, c ) = ( C 3 − { 0 } ) / ( x, y, z ) ∼ ( t a x, t b y, t c z ) (Fano orbifold). D b Coh ( X ) generated by exceptional collection O X , O X (1) , . . . , O X ( N − 1) ( N = a + b + c ) (Homogeneous coords. x, y, z are sections of O ( a ) , O ( b ) , O ( c )) Hom( O ( i ) , O ( j )) ≃ degree ( j − i ) part of symmetric algebra C [ x, y, z ] (degs. a, b, c ) All in degree 0 (no Ext’s); composition = obvious. Mirror: Y = { x a y b z c = 1 } ⊂ ( C ∗ ) 3 , w = x + y + z . ( Y ≃ ( C ∗ ) 2 if gcd ( a, b, c ) = 1) Z /N ( N = a + b + c ) acts by diagonal mult.; complex conjugation. We choose ω invariant under Z /N and complex conj. ( ⇒ [ ω ] = 0 exact) Theorem. D F ( w ) ≃ D b Coh ( X ) (should also work in higher dimensions...) 6

  9. Non-commutative deformations X = CP 2 ( a, b, c ); Y = { x a y b z c = 1 } ⊂ ( C ∗ ) 3 , w = x + y + z , ω invariant under Z /N and complex conj. ( ⇒ exact): Theorem. D F ( w ) ≃ D b Coh ( X ) Can deform FS ( w ) by changing [ ω ] (& introducing a B -field). � Choose τ ∈ C , and take S 1 × S 1 [ ω + iB ] = τ ( S 1 × S 1 generates H 2 ( Y, Z ) ≃ Z ) (keeping Z /N -invariance) → deformed category D F ( w ) τ . ⇐ ⇒ non-commutative deformation X τ of X : deform polynomial algebra C [ x, y, z ] to yz = µ 1 zy, zx = µ 2 xz, xy = µ 3 yx, with µ a 1 µ b 2 µ c 3 = e − τ Theorem. ∀ τ ∈ C , D F ( w ) τ ≃ D b Coh ( X ) τ . 7

  10. Outline of argument Y = { x a y b z c = 1 } ⊂ ( C ∗ ) 3 , w = x + y + z : crit w = { λ ∈ C , λ a + b + c = ( a + b + c ) a + b + c } = { λ j , 0 ≤ j < N } a a b b c c λ 0 ∈ R + , λ j = λ 0 exp( − 2 πi j a + b + c ) Reference fiber: Σ 0 = w − 1 (0); arcs γ j = straight lines. ⇒ vanishing cycles L j ⊂ Σ 0 . If ω is Z N -invariant, then L j = exp( − 2 πi j a + b + c ) · L 0 . Visualize L j and intersections via projection π x : Σ 0 → C ∗ . ( b + c -fold branched covering, with a + b + c branch points) L 4 r r L 5 r L 3 L 1 r L 2 r ❝ ❝ r L 6 L 2 r L 0 r L 0 L 1 r r ( a, b, c ) = (4 , 2 , 1) ( a, b, c ) = (1 , 1 , 1) ⇒ Description of F ( w, { γ j } ): • Objects: L j , 0 ≤ j < N . i<j CF ∗ ( L i , L j ) = free module of rank 3 N , generators • � x i ∈ CF ∗ ( L i , L i + a ), x i ∈ CF ∗ ( L i , L i + b + c ), ¯ y i ∈ CF ∗ ( L i , L i + b ), y i ∈ CF ∗ ( L i , L i + a + c ), ¯ z i ∈ CF ∗ ( L i , L i + c ), z i ∈ CF ∗ ( L i , L i + a + b ). ¯ 8

  11. Outline of argument Description of F ( w, { γ j } ): • Objects: L j , 0 ≤ j < N . i<j CF ∗ ( L i , L j ) = free module of rank 3 N , generators • � x i ∈ CF ∗ ( L i , L i + a ), x i ∈ CF ∗ ( L i , L i + b + c ), ¯ y i ∈ CF ∗ ( L i , L i + b ), y i ∈ CF ∗ ( L i , L i + a + c ), ¯ z i ∈ CF ∗ ( L i , L i + c ), z i ∈ CF ∗ ( L i , L i + a + b ). ¯ • for suitable graded Lagrangian lifts of L j , deg( x i , y i , z i ) = 1 , deg(¯ x i , ¯ y i , ¯ z i ) = 2 . • m k = 0 for k � = 2. • only non-zero compositions: m 2 ( x i , z i + a ) = α ′ ¯ m 2 ( x i , y i + a ) = α ¯ z i , y i , m 2 ( y i , x i + b ) = α ′ ¯ m 2 ( y i , z i + b ) = α ¯ x i , z i , m 2 ( z i , y i + c ) = α ′ ¯ m 2 ( z i , x i + c ) = α ¯ y i , x i . If [ ω ] = 0 then α = α ′ ( ⇒ exterior algebra), in general α 1 � � � α ′ = exp − S 1 × S 1 ω + iB . a + b + c Then pass to dual exceptional collection by “full mutation” (change { γ j } to { γ ′ j } with base point at infinity) ⇒ exterior algebra becomes truncated symmetric algebra. 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend