evidence for infinitely diverse non convex mirrors
play

Evidence for (Infinitely Diverse) Non-Convex Mirrors Tristan - PowerPoint PPT Presentation

Evidence for (Infinitely Diverse) Non-Convex Mirrors Tristan Hbsch @ Southeastern Regional Mathematical String Theory Meeting V-Tech University, Blacksburg VA; 2017.10.07 Departments of Physics & Astronomy and Mathematics,


  1. Evidence for 
 (Infinitely Diverse) 
 Non-Convex Mirrors Tristan Hübsch @ Southeastern Regional Mathematical String Theory Meeting 
 V-Tech University, Blacksburg VA; 2017.10.07 Departments of Physics & Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia Department of Physics, University of Central Florida, Orlando FL

  2. … — a mindmap Avoid the poles of Laurent polynomials gCI (C)NLSM Prehistory 
 Geometry: 
 Diffeo-Data 
 Holo-Data 
 1980s AAGGL 2015 
 ☛ H * ( X , ℤ ) ☛ H * ( X ) BH 2016/06 
 ☛ Chern classes 
 ☛ H * ( X,T ) 
 GvG 2017 ☛ Chern numbers 
 ☛ H * ( X, End T ) 
 ☛ Yukawa κ [ ω A , ω B , ω C ] ☛ Yukawa κ [ ϕ a , ϕ b , ϕ c ] ☛ p 1 [ ω A ] Toric GLSM Semiclassical Data ☛ phases 
 Geometry: Analysis ☛ phase-boundaries Quantum Data Textbooks † … 
 ☛ W 1993 … ✌"# ☛ A-discriminants 
 BH 2016/11 
 ☛ MP 1995 ☛ B-discriminants 
 BH 2017/ 10? Today! ☛ Yukawas 
 ☛ Instantons, GW

  3. Non-Convex Mirror-Models Prehistory s c i s The Big Picture y h P Laurent GLSModels Phases & Discriminants M s …and in the Mirror c i a s y t h h “It doesn’t matter what it’s called, P …if… it has substance.” 
 S.-T. Yau 3

  4. Pre-History (Where are We Coming From?)

  5. Pre-History Classical Constructions Complete Intersections } Ex.: ( x–x 1 ) 2 +( y–y 1 ) 2 +( z–z 1 ) 2 = R 12 
 ( x–x 2 ) 2 +( y–y 2 ) 2 +( z–z 2 ) 2 = R 22 Algebraic (constraint) equations …in a well-understood “ambient” ( A ) Work over complex numbers …& incl. “infinity” (e.g., ℂℙ n ’s) For hypersurfaces : X ={ p ( x ) = 0} ⊂ A Just like gauge 
 Functions: [ f ( x )] X = [ f ( x ) ≃ f ( x ) + 휆 · p ( x )] A transformations Di ff erentials: [d x ] X = [d x ≃ d x + 휆 ·d p ( x )] A Homogeneity: ℂℙ n = U ( n +1)/[ U (1) × U ( n )] …with tensors Di ff erential r -forms on ℂℙ n are all U ( n +1) -tensors 5

  6. The Big Picture (What are We Doing?)

  7. Big Picture Superstrings = Framework for Models Gauged Linear Sigma Model (GLSM) — on the world-sheet Several “matter” fields + several “gauge” fields A μ ≃ A μ + ( ∇ μ λ ) Several coordinate functions – equivalence relations “Kinetic” part ( ∥ [ ∂ + q X A ] X ∥ 2 ): KE + gauge-matter coupling “Potential” part ( W ( X ) ): PE (gauge-invariant), “ F -terms” “Gauge” part ( ∥∂∧ A ∥ 2 + τ ·( ∂∧ A ) ): “ D -terms” & “ F.-I. terms” World-sheet matter & gauge symmetries are both complex E.g.: ( x 1 , x 2 , x 3 ) ≃ ( λ q 1 x 1 , λ q 2 x 2 , λ q 3 x 3 ) , λ ∈ ℂ * : ℙ 2 ( q 1 : q 2 : q 3 ) …makes sense if the fixed-point set is excised (forbidden) from ( x 1 , x 2 , x 3 ) ∈ ℂ 3 …or considered as an alternate (separate) location. } Gauge symmetry “stratifies” the X -field-space ⇒ spacetime & | vacuum ⟩ determined by min[ W ( X )] : hypersurface 8

  8. Big Picture Toric Geometry Consider S 2 ≃ ℙ 1 : ξ (+1) ξ + 1 = η − 1 (–1) η Need at least two 
 (complex) coordinates: Match (the exponents) near the equator: (+1) N = (–1) S Symmetry: ξ → λ +1 ξ and η → λ –1 η , with λ ∈ ℂ * = ( ℂ ∖ {0}) Explicitly: λ = e i ( α + i β ) = e – β ·e i α = (real) rescaling · phase-change usual gauge 
 “thickened” S 1 transformation 9

  9. Big Picture Toric Geometry More complicated examples: S 2 ⨯ S 2 An entire 2 nd sphere at every point of 1 st Orthogonal ↔ linearly independent Top-dim cones ↔ coord. patches 2-dim (enveloping) polytope ↔ ( ℂ ) 2-dim. geometry More complicated yet: “twisted” product T wisted torus S 1 ⨳ S 1 ( S 1 “twists” about S 1 ) 
 ( ≃ crystal w/oblique lattice $ ). Now ⨯ℂ : Hirzebruch ( ℂ ) surface, F 1 . $ n o g y “Slanting” (0,–1) → (– m ,–1) the bottom 
 l o p vertex (& two cones) encodes the “twist” g n i … F m = m -twisted ℙ 1 -bundle over ℙ 1 . n n a p …and so on: 4 textbooks worth! s 10

  10. Toric Geometry x 3 Polytope Encoding x 1 The polytope encodes the space x 2 …but also its symmetries: m =1 x 4 Assign each vertex a (Cox) coordinate Read o ff cancelling relations v x 1 + 1 ~ v x 2 + 0 ~ v x 3 + 0 ~ v x 4 = 0 1 ~ ( x 1 , x 2 , x 3 , x 4 ) ' ( λ 1 x 1 , λ 1 x 2 , λ 0 x 3 , λ 0 x 4 ) v x 1 + m ~ v x 2 + 1 ~ v x 3 + 1 ~ v x 4 = 0 0 ~ ( x 1 , x 2 , x 3 , x 4 ) ' ( λ 0 x 1 , λ m x 2 , λ 1 x 3 , λ 1 x 4 ) Defines two independent (gauge) symmetries a GLSM w/gauge-invariant Lagrangian and | ground state ⟩ where KE = 0 = PE & (quantum) Hilbert space on it 11

  11. BH Laurent GLSModels (and their Toric Geometry) A Generalized Construction of 
 Calabi-Yau Models and Mirror Symmetry arXiv:1611.10300

  12. BH Laurent GLSMs — Proof-of-Concept — & Non-Convex Mirrors arXiv:1611.10300 2-torus in the Hirzebruch surface F m : “ Anticanonical” (Calabi-Yau, Ricci-flat) hypersurface in F m Toric description (0 , 1) ˆ e 2 =(0 , 1) N � � ? N R � Σ F 3 F 3 � 2 � 1 ( � 1 , 0) (1 , 0) � ˆ e 1 =( � 1 , 0) e 1 =(1 , 0) ˆ spanning polytope � 3 � 4 � � F 3 non-convex 
 � 3ˆ e 1 � ˆ e 2 =( � 3 , � 1) ( � m, � 1) ( � 3 , � 1) ( � m, � 1) for m>2 (…also, non-Fano for m> 2) The star-triangulation of the spanning polytope 
 defines the fan of the underlying toric variety 13

  13. BH Laurent GLSMs — Proof-of-Concept — & Non-Convex Mirrors arXiv:1611.10300 The Newton polytope (polar of spanning polytope): The “standard” 
 ★ )°:={ u : ⟨ u , v ⟩≥ –1, v ∈ Δ ★ } ( Δ polar polytope 
 ν 2 is non-integral The spanning polytope φ 2 φ 1 � � � ∆ ? The “standard” 
 F 3 ∆ ? σ 2 σ 1 F 3 ⊂ N R ν 3 polar of the 
 σ 4 polar is not 
 φ 3 σ 3 ν 1 the spanning 
 ν 4 φ 4 polytope that 
 & we started with Is no good 
 F 3 ) � ) � = Conv( ∆ ? for mirror 
 (( ∆ ? F 3 ) % symmetry 6 = ∆ ? F 3 � 2 � 3 , � 1 14

  14. BH Laurent GLSMs — Proof-of-Concept — & Non-Convex Mirrors arXiv:1611.10300 The oriented Newton polytope (trans-polar of spanning polytope): Constr uction (trans-polar) “Normal fan” ( φ 4 ) � Decompose Δ ⭑ into 
 Dual cones ↦ 
 convex faces θ i ; inside opening 
 $ trans-polar Find the (standard) polar 
 vertex-cones ( θ i )° for each (convex) face (Re)assemble parts dually 
 ( ν 1 ) � ν 2 to ( θ i ∩ θ j )° = [( θ i )°, ( θ j )°] 
 ( ν 4 ) � φ 2 φ 1 with “neighbors” ν 3 ν 1 φ 3 φ 4 ( φ 1 ) � ( φ 2 ) � ν 4 ( ν 2 ) � ( ν 3 ) � Agrees with standard (if obscure?) constructions… ( φ 3 ) � 15

  15. BH Laurent GLSMs — Proof-of-Concept — & Non-Convex Mirrors arXiv:1611.10300 x 2 1 x 5 The oriented Newton polytope: ( � 1 , 4) ( � 1 , 1+ m ) 3 M � � F 3 specifies allowed monomials x 2 1 x 4 3 x 4 ( � 1 , 3) % The so-defined 2-tori 
 are all singular @(0,0,1) � F 3 � x 2 1 x 3 3 x 2 ( � 1 , 2) 4 …as each monomial has 
 at least an x 1 factor, so 
 x 1 x 2 x 2 x 2 1 x 2 3 x 3 3 4 ( � 1 , 1) (0 , 1) f ( x ) = x 1 · g ( x ) ( � ? F 3 ) � The extension 
 x 2 1 x 3 x 4 x 1 x 2 x 3 x 4 (0 , 0) 4 ( � 1 , 0) corresponds to 
 Laurent monomials: (0 , � 1) (1 , � 1) x 1 x 2 x 2 x 2 1 x 5 ( � 1 , � 1) x 2 4 4 9 % 2 ( 1, � 1 ) 7! � ( 2 m , � 1) ! ( 2 3 , � 1) = x 4 $# make the 2-tori Δ -regular. x 2 (1 , 1 � m ) ! (1 , � 2) 2 ; ( 1, � 2 ) 7! x 3 16

  16. BH Laurent GLSMs — Proof-of-Concept — & Non-Convex Mirrors arXiv:1611.10300 The oriented Newton polytope: 9 is star-triangulable → a toric variety 9 ’ i r o 3 2 di ff ers from its convex hull by “flip-folded” simplices t 9 9 t ’ ’ a v H n o a + k m Associating coordinates to corners: i l , l h a o T d k u u + s P SP : x 1 =(–1,0), x 2 =(1,0), x 3 =(0,1), x 4 =(–3,–1) n a + o M h i i s k NP : y 1 =(–1,4), y 2 =(–1,–1), y 3 =(1,–1), y 4 =(1,–2) r s ☛ “multi-fans” a n K a ; � 7! v o Expressing each as a monomial in the others: h K 4 � y 5 � y 5 4 � x 2 � x 2 NP: x 2 1 x 5 3 � x 2 1 x 5 SP: y 2 1 y 2 2 � y 2 3 y 2 2 2 1 2 vs. x 4 x 3 y 4 y 3 2 3 2 3 P 2 P 2 (1:1:3) [5] (3:2:5) [10] 2 0 5 0 2 2 0 0 6 7 6 7 2 0 0 5 0 0 2 2 BHK 6 7 6 7 6 7 6 7 � 1 � 1 0 2 0 5 0 0 4 5 4 5 � 1 � 1 0 2 0 0 5 0 Mirror Construction 
 arXiv:hep-th/9201014 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend