6 003 signals and systems
play

6.003: Signals and Systems Z Transform September 22, 2011 1 Concept - PowerPoint PPT Presentation

6.003: Signals and Systems Z Transform September 22, 2011 1 Concept Map: Discrete-Time Systems Multiple representations of DT systems. Delay R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 R R 2 Delay Delay


  1. 6.003: Signals and Systems Z Transform September 22, 2011 1

  2. Concept Map: Discrete-Time Systems Multiple representations of DT systems. Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 2

  3. Concept Map: Discrete-Time Systems Relations among representations. Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 3

  4. Concept Map: Discrete-Time Systems Two interpretations of “Delay.” Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 4

  5. Concept Map: Discrete-Time Systems Relation between System Functional and System Function. Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay Unit-Sample Response R → 1 index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . z Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 5

  6. Check Yourself What is relation of System Functional to Unit­Sample Response Delay → R Block Diagram System Functional + + X Y Y 1 X = H ( R ) = 1 − R − R 2 Delay Delay Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 6

  7. Check Yourself Expand functional in a series: Y 1 X = H ( R ) = 1 − R − R 2 1 + R +2 R 2 +3 R 3 +5 R 4 +8 R 5 + · · · 1 − R − R 2 1 1 −R −R 2 R + R 2 R −R 2 −R 3 2 R 2 + R 3 2 R 2 − 2 R 3 − 2 R 4 3 R 3 +2 R 4 3 R 3 − 3 R 4 − 3 R 5 · · · 1 1 − R − R 2 = 1 + R + 2 R 2 + 3 R 3 + 5 R 4 + 8 R 5 + 13 R 6 + · · · H ( R ) = 7

  8. Check Yourself Coefficients of series representation of H ( R ) 1 1 − R − R 2 = 1 + R + 2 R 2 + 3 R 3 + 5 R 4 + 8 R 5 + 13 R 6 + · H ( R ) = · · are the successive samples in the unit­sample response! h [ n ] : 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . If a system is composed of (only) adders, delays, and gains, then H ( R ) = h [0] + h [1] R + h [2] R 2 + h [3] R 3 + h [4] R 4 + · · · � h [ n ] R n = n We can write the system function in terms of unit­sample response! 8

  9. Check Yourself What is relation of System Functional to Unit­Sample Response? Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay H ( R ) = � h [ n ] R n Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 9

  10. Check Yourself What is relation of System Function to Unit­Sample Response? Delay → R Block Diagram System Functional + + X Y Y 1 X = H ( R ) = 1 − R − R 2 Delay Delay H ( R ) = � h [ n ] R n Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 10

  11. Check Yourself Start with the series expansion of system functional: � � h [ n ] R n H ( R ) = n 1 Substitute R → : z � � − n H ( z ) = h [ n ] z n 11

  12. Check Yourself What is relation of System Function to Unit­Sample Response? Delay → R Block Diagram System Functional + + X Y 1 Y X = H ( R ) = 1 − R − R 2 Delay Delay H ( R ) = � h [ n ] R n Unit-Sample Response index shift h [ n ]: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , . . . H ( z ) = � h [ n ] z − n Difference Equation System Function z 2 H ( z ) = Y ( z ) y [ n ] = x [ n ] + y [ n − 1] + y [ n − 2] X ( z ) = z 2 − z − 1 12

  13. Check Yourself Start with the series expansion of system functional: � � h [ n ] R n H ( R ) = n 1 Substitute R → : z � � − n H ( z ) = h [ n ] z n Today: thinking about a system as a mathematical function H ( z ) rather than as an operator. 13

  14. Z Transform We call the relation between H ( z ) and h [ n ] the Z transform. � � − n H ( z ) = h [ n ] z n Z transform maps a function of discrete time n to a function of z . Although motivated by system functions, we can define a Z trans- form for any signal. ∞ � � − n X ( z ) = x [ n ] z n = −∞ Notice that we include n < 0 as well as n > 0 → bilateral Z transform (there is also a unilateral Z transform with similar but not identical properties). 14

  15. Simple Z transforms Find the Z transform of the unit­sample signal. δ [ n ] n x [ n ] = δ [ n ] ∞ � � − n 0 = 1 X ( z ) = x [ n ] z = x [0] z n = −∞ 15

  16. Simple Z transforms Find the Z transform of a delayed unit­sample signal. x [ n ] n x [ n ] = δ [ n − 1] ∞ � � − n − 1 − 1 X ( z ) = x [ n ] z = x [1] z = z n = −∞ 16

  17. Check Yourself What is the Z transform of the following signal. � n u [ n ] � 7 x [ n ] = 8 n − 4 − 3 − 2 − 1 0 1 2 3 4 z − 1 1 1 z 1. 2. 3. 4. 5. none 1 − 7 1 − 7 1 − 7 1 − 7 8 z − 1 8 z − 1 8 z 8 z 17

  18. Check Yourself What is the Z transform of the following signal. � n u [ n ] � 7 x [ n ] = 8 n − 4 − 3 − 2 − 1 0 1 2 3 4 � � n � � n ∞ ∞ 7 7 1 � � − n � � − n X ( z ) = u [ n ] = = z z 1 − 7 − 1 8 8 8 z n = −∞ n =0 18

  19. Check Yourself What is the Z transform of the following signal. 2 � n u [ n ] � 7 x [ n ] = 8 n − 4 − 3 − 2 − 1 0 1 2 3 4 z − 1 1 1 z 1. 2. 3. 4. 5. none 1 − 7 1 − 7 1 − 7 1 − 7 8 z − 1 8 z − 1 8 z 8 z 19

  20. Z Transform Pairs The signal x [ n ] , which is a function of time n , maps to a Z transform X ( z ) , which is a function of z . n � � � � 7 1 x [ n ] = u [ n ] ↔ X ( z ) = 1 − 7 8 − 1 8 z For what values of z does X ( z ) make sense? The Z transform is only defined for values of z for which the defining sum converges. n n ∞ ∞ ∞ ∞ � � � � � � � � � � � � 7 7 1 − n − n X ( z ) = z u [ n ] = z = 1 − 7 8 8 8 z − 1 n = −∞ n =0 � � 7 � < 1 , i.e., | z | > 7 � − 1 � Therefore 8 z 8 . � � � 20

  21. Regions of Convergence The Z transform X ( z ) is a function of z defined for all z inside a Region of Convergence (ROC) . n � � � � 7 1 7 x [ n ] = u [ n ] ↔ X ( z ) = 8 z − 1 ; | z | > 1 − 7 8 8 7 ROC: | z | > 8 21

  22. Z Transform Mathematics Based on properties of the Z transform. Linearity: if x 1 [ n ] ↔ X 1 ( z ) for z in ROC 1 and x 2 [ n ] ↔ X 2 ( z ) for z in ROC 2 then x 1 [ n ] + x 2 [ n ] ↔ X 1 ( z ) + X 2 ( z ) for z in ( ROC 1 ∩ ROC 2 ) . Let y [ n ] = x 1 [ n ] + x 2 [ n ] then ∞ � � − n Y ( z ) = y [ n ] z n = −∞ ∞ � � − n = ( x 1 [ n ] + x 2 [ n ]) z n = −∞ ∞ ∞ � � − n + � � − n = x 1 [ n ] z x 2 [ n ] z n = −∞ n = −∞ = X 1 ( z ) + X 2 ( z ) 22

  23. Delay Property If x [ n ] ↔ X ( z ) for z in ROC then x [ n − 1] ↔ z − 1 X ( z ) for z in ROC. We have already seen an example of this property. δ [ n ] ↔ 1 − 1 δ [ n − 1] ↔ z More generally, ∞ � � − n X ( z ) = x [ n ] z n = −∞ Let y [ n ] = x [ n − 1] then ∞ ∞ � � − n � − n Y ( z ) = y [ n ] z = x [ n − 1] z n = −∞ n = −∞ Substitute m = n − 1 ∞ � � − m − 1 = z − 1 X ( z ) Y ( z ) = x [ m ] z m = −∞ 23

  24. Rational Polynomials A system that can be described by a linear difference equation with constant coefficients can also be described by a Z transform that is a ratio of polynomials in z . b 0 y [ n ] + b 1 y [ n − 1] + b 2 y [ n − 2] + · · · = a 0 x [ n ] + a 1 x [ n − 1] + a 2 x [ n − 2] + · · · Taking the Z transform of both sides, and applying the delay property − 1 Y ( z )+ b 2 z − 2 Y ( z )+ · · · = a 0 X ( z )+ a 1 z − 1 X ( z )+ a 2 z − 2 X ( z )+ · · · b 0 Y ( z )+ b 1 z a 0 + a 1 z − 1 + a 2 z − 2 + · · · H ( z ) = Y ( z ) = b 0 + b 1 z − 1 + b 2 z − 2 + · · · X ( z ) a 0 z k + a 1 z k − 1 + a 2 z k − 2 + · · · = b 0 z k + b 1 z k − 1 + b 2 z k − 2 + · · · 24

  25. Rational Polynomials Applying the fundamental theorem of algebra and the factor theo- rem, we can express the polynomials as a product of factors. k + a 1 z k − 1 + a 2 z k − 2 + · · · H ( z ) = a 0 z b 0 z k + b 1 z k − 1 + b 2 z k − 2 + · · · ( z − z 0 ) ( z − z 1 ) · · · ( z − z k ) = ( z − p 0 ) ( z − p 1 ) · · · ( z − p k ) where the roots are called poles and zeros . 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend