homogeneous transforms
play

Homogeneous transforms Rotation matrices assume that the origins of - PowerPoint PPT Presentation

Homogeneous transforms Rotation matrices assume that the origins of the two frames are co-located. What if theyre separated by a translation? B y A y p B d A A x B x Homogeneous transform B y A y (same point, two


  1. Homogeneous transforms Rotation matrices assume that the origins of the two frames are co-located. • What if they’re separated by a translation? B y A y p B d A A x B x

  2. Homogeneous transform B ˆ y A ˆ y (same point, two reference frames) B p A d B A p A ˆ B ˆ x x A A B A = + p R p d B B

  3. Homogeneous transform B y A A B A = + p R p d A y B B     A A B R d p p     = B B a d     b 0 1 1     A x B   A x r r r d   11 12 13 x     A B B  r r r d  p p     A = 21 22 23 y = T       B A r r r d 1 1       31 32 33 z   0 0 0 1   always one always zeros

  4. Example 1: homogeneous transforms B x B y B z l A y θ A x A z B T What’s ? A

  5. Example 1: homogeneous transforms A y B T What’s ? B B y x A θ θ − θ  cos( ) sin( ) 0  A x   A , A R = θ θ sin( ) cos( ) 0 z B z   B   0 0 1   − l    B B R d     B = A A T B B = x d A 0     B A y 0 1     0 B z   l θ θ − cos( ) sin( ) 0 l     − θ θ sin( ) cos( ) 0 0   A y B = T A   0 0 1 0   θ   0 0 0 1   A x A z

  6. Example 2: homogeneous transforms y x z ( ) b   θ − θ θ + c 0 s l 2 c π b b 4   ( ) θ θ θ + s 0 c l 2 s π   a = T b 4 l   − 0 1 0 0    0 0 0 1    l y z This arm rotates about the axis. a a θ x a z a a T What’s ? b

  7. Example 3: homogeneous transforms A ˆ y c ˆ c ˆ y x l c ˆ z φ θ A ˆ x A ˆ z   − − c 0 s c s 0 c c s c s       θ θ φ φ θ φ φ θ θ     a = a b = = R R R 0 1 0 s c 0  s c 0      φ φ φ φ c b c       − − s 0 c 0 0 1 s c s s c       θ θ θ φ θ φ θ

  8. Example 3: homogeneous transforms A ˆ y c ˆ c ˆ y x l c ˆ z φ θ A ˆ x A ˆ z − l   −  −   c c s c s l lc c     θ φ φ θ θ   θ φ    c = d 0 a a c =− = − = d R d s c 0 0 ls         c φ φ φ         0 − − s c s s c 0 ls c         θ φ θ φ θ θ φ − c c s c s lc c   θ φ φ θ θ θ φ     a a s c 0 ls R d     φ φ φ a c = = T     c − − s c s s c ls c 0 1     θ φ θ φ θ θ φ   0 0 0 1  

  9. Inverse of the Homogeneous transform Can also derive it from the forward Homogeneous transform: B = B A + B p R p d A A ( ) T A B B B = − p R p d A A   B p − 1   A B = p T   A 1     T T B B B − R R d −   1 B = where A A A T   A 0 1  

  10. Inverse of the Homogeneous transform B ˆ y A ˆ y (same point, two reference frames) B p A d B A p A ˆ B ˆ x x ( ) B B A B A B A A = − = − p R p R d R p d A A B A B

  11. Example 1: homogeneous transform inverse B x B y B z l θ θ −  cos( ) sin( ) 0 l    − θ θ sin( ) cos( ) 0 0   B = T A   A y 0 0 1 0     0 0 0 1   θ A x A T What’s ? B A z

  12. Example 1: homogeneous transform inverse θ − θ cos( ) sin( ) 0     T T B B B − R R d   − 1   B = T A A A A R = θ θ sin( ) cos( ) 0     B A   0 1   0 0 1   − θ − θ − θ l  cos( ) sin( ) 0 l l cos( )              B A B = − = θ θ = θ d A 0 R d sin( ) cos( ) 0 0 l sin( )         B A         0 0 0 1 0 0         θ − θ θ  cos( ) sin( ) 0 l cos( )    θ θ θ sin( ) cos( ) 0 l sin( )   − 1 B A = = T T   A B 0 0 1 0     0 0 0 1  

  13. Example 2: homogeneous transform inverse y x z ( ) b   θ − θ θ + c 0 s l 2 c π b b 4   ( ) θ θ θ + s 0 c l 2 s π   a = T b 4 l   − 0 1 0 0    0 0 0 1    b T What’s ? a l y ( ) a   θ θ − + c s 0 l 2 c c s s θ θ π π θ θ + θ +   4 4 − 0 0 1 0   x b = ( ) T a   a − θ θ − s c 0 l 2 s c c s z θ π θ π  θ + θ +  4 4 a 0 0 0 1    

  14. Forward Kinematics • Where is the end effector w.r.t. the “base” frame?

  15. Composition of homogeneous transforms 3 x Base to eff transform 3 y l 3 l 0 0 1 2 T = T T T q 2 3 2 3 1 2 3 x 1 x 1 y q 2 Transform associated w/ link 3 2 y 0 y Transform associated w/ link 2 q 1 0 x l Transform associated w/ link 1 1 0 z

  16. Forward kinematics: composition of homogeneous transforms 3 x 0 0 1 2 T = T T T 3 1 2 3 −  c s 0 l c  3 y 1 1 1 1   s c 0 l s   l 1 1 1 1 0 = T 3   1 0 0 1 0 l q   2 3 2   x 1 x 0 0 0 1   1 y q −  c s 0 l c  2 2 2 2 2   s c 0 l s   2 2 2 2 1 = T 2 y   0 2 y 0 0 1 0     0 0 0 1   q 1 0 x l 1 0 z

  17. Forward kinematics: composition of homogeneous transforms 3 x 0 0 1 2 T = T T T 3 1 2 3 3 y − c s 0 l c   3 3 3 3   l s c 0 l s   3 3 3 3 3 2 = T   l q 3 0 0 1 0 2 3 2 x   1 x   1 0 0 0 1 y   q 2 2 y 0 y q 1 0 x l 1 0 z

  18. Remember those double-angle formulas… ( ) ( ) ( ) ( ) ( ) θ ± φ = θ φ ± θ φ sin sin cos cos sin ( ) ( ) ( ) ( ) ( ) θ ± φ = θ φ  θ φ cos cos cos sin sin

  19. Forward kinematics: composition of homogeneous transforms 0 0 1 2 T = T T T 3 1 2 3 − − − c s 0 l c c s 0 l c c s 0 l c       1 1 1 1 2 2 2 2 3 3 3 3       s c 0 l s s c 0 l s s c 0 l s       1 1 1 1 2 2 2 2 3 3 3 3 0 = T       3 0 0 1 0 0 0 1 0 0 0 1 0             0 0 0 1 0 0 0 1 0 0 0 1       − + + c s 0 l c l c l c   123 123 1 1 2 12 3 123   + + s c 0 l s l s l s   123 123 1 1 2 12 3 123 0 = T   3 0 0 1 0     0 0 0 1  

  20. DH parameters • There are a large number of ways that homogeneous transforms can encode the kinematics of a manipulator • We will sacrifice some of this flexibility for a more systematic approach: DH (Denavit-Hartenberg) parameters. • DH parameters is a standard for describing a series of transforms for arbitrary mechanisms. 3 3 x z 3 x 3 y l l 3 3 2 x l q 2 l 3 2 q x 1 x 2 3 1 1 y z 2 z q 2 q 2 1 2 x y 0 y 0 y q 1 q 0 x 1 l 0 1 z l 0 1 z 0 x

  21. Forward kinematics: DH parameters These four DH parameters, ( ) α θ a d i i i i represent the following homogeneous matrix: − c s 0 0 1 0 0 0 1 0 0 a 1 0 0 0         θ θ i         i i − s c 0 0 0 1 0 0 0 1 0 0 0 c s 0         θ θ α α = T i i i i         0 0 1 0 0 0 1 d 0 0 1 0 0 s c 0         α α i i i         0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1         a d Then, translate by along x axis First, translate by along z axis i i α θ and rotate by about x axis and rotate by about z axis i i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend