holographic pomeron and schwinger mechanism
play

Holographic Pomeron and Schwinger Mechanism G ok ce Ba sar Stony - PowerPoint PPT Presentation

Holographic Pomeron and Schwinger Mechanism G ok ce Ba sar Stony Brook University April 30, 2012 GB, D. Kharzeev, H.U. Yee & I. Zahed arXiv:1202.0831, Phys.Rev. D 85 (2012) 105005 G ok ce Ba sar Holographic Pomeron and


  1. Holographic Pomeron and Schwinger Mechanism G¨ ok¸ ce Ba¸ sar Stony Brook University April 30, 2012 GB, D. Kharzeev, H.U. Yee & I. Zahed arXiv:1202.0831, Phys.Rev. D 85 (2012) 105005 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  2. Outline ◮ Motivation and basics ◮ Calculation of the scattering amplitude ◮ Schwinger string production ◮ Conclusions G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  3. Motivation p 1 2 2 s=(p +p ) -t=-(p -p ) 1 2 1 3 p 2 ◮ Understand near forward, high energy ( s >> − t ) hadronic scattering amplitudes G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  4. Motivation p 1 2 2 s=(p +p ) -t=-(p -p ) 1 2 1 3 p 2 ◮ Understand near forward, high energy ( s >> − t ) hadronic scattering amplitudes ◮ Small momentum transfer → non-pertrubative G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  5. Motivation p 1 2 2 s=(p +p ) -t=-(p -p ) 1 2 1 3 p 2 ◮ Understand near forward, high energy ( s >> − t ) hadronic scattering amplitudes ◮ Small momentum transfer → non-pertrubative ◮ Large impact parameter → confinement G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  6. Motivation p 1 2 2 s=(p +p ) -t=-(p -p ) 1 2 1 3 p 2 ◮ Understand near forward, high energy ( s >> − t ) hadronic scattering amplitudes ◮ Small momentum transfer → non-pertrubative ◮ Large impact parameter → confinement ◮ Total cross section: σ tot ( s ) = s − 1 I m [ T ( s, t = 0)] G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  7. Regge theory Analyticity and crossing symmetry of the S matrix T ( s, t ) ≈ β ( t ) s α ( t ) ± ( − s ) α ( t ) sin( πα ( t )) Singularities of T in the complex angular momentum plane � Exchange of families of states in t-channel (“Reggeons”) � Regge trajectory: α ( t ) G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  8. Regge theory Analyticity and crossing symmetry of the S matrix T ( s, t ) ≈ β ( t ) s α ( t ) ± ( − s ) α ( t ) sin( πα ( t )) Singularities of T in the complex angular momentum plane � Exchange of families of states in t-channel (“Reggeons”) � Regge trajectory: α ( t ) = α (0) + α ′ t (Apel et al. 79) G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  9. P Pomeron σ tot ∝ s α (0) − 1 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  10. P Pomeron σ tot ∝ s α (0) − 1 80 70 60 50 40 ( Donnaschie et al.) 30 10 100 1000 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  11. Pomeron σ tot ∝ s α (0) − 1 Pomeron: Regge trajectory with α P (0) ≈ 1 80 70 60 50 40 ( Donnaschie et al.) 30 10 100 1000 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  12. Pomeron σ tot ∝ s α (0) − 1 Pomeron: Regge trajectory with α P (0) ≈ 1 80 70 ? 60 50 40 ( Donnaschie et al.) 30 10 100 1000 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  13. Pomeron σ tot ∝ s α (0) − 1 Pomeron: Regge trajectory with α P (0) ≈ 1 ◮ (Donnachie, Landshoff), fit to experiment, α (0) ≈ 1 . 08 ◮ (Low-Nussinov), two gluon exchange, α (0) = 1 ◮ (BFKL), gluon ladder, (cylinder topology at large N c ), α (0) ≈ 1 . 3 ◮ ... 80 70 ? 60 50 40 ( Donnaschie et al.) 30 10 100 1000 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  14. Idea Calculate dipole-dipole amplitude through gauge/string duality G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  15. Idea Calculate dipole-dipole amplitude through gauge/string duality ◮ (Janik, Peschanski): classical string worldsheet by variation ◮ (Brower, Polchinski, Strassler, Tan) : diffusion of string in curved space G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  16. Idea Calculate dipole-dipole amplitude through gauge/string duality ◮ (Janik, Peschanski): classical string worldsheet by variation ◮ (Brower, Polchinski, Strassler, Tan) : diffusion of string in curved space Dipole ∼ Wilson loop G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  17. Wilson lines W ( C ) = 1 � � � �� A µ ( x ) dx µ Tr P c exp ig N c C G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  18. Wilson lines W ( C ) = 1 � � � �� A µ ( x ) dx µ Tr P c exp ig N c C Static Wilson loop: T L < W > ≈ e − V ( L ) T V ( L ) : potential between 2 static charges ◮ Abelian gauge field: V ( L ) ∝ 1 /L ⇒ “Perimeter law” ◮ Confining potential: V ( L ) = σ T L ⇒ “Area law” G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  19. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  20. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  21. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 4 π G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  22. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 � q · � � d 2 q e i� b 4 π = exp ig 2 � (2 π ) 2 q 2 + µ 2 G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  23. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 � q · � � d 2 q e i� b 4 π = exp ig 2 � (2 π ) 2 q 2 + µ 2 ◮ Dipole-dipole scattering G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  24. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 � q · � � d 2 q e i� b 4 π = exp ig 2 � (2 π ) 2 q 2 + µ 2 ◮ Dipole-dipole scattering high energy hadron ∼ gluon cloud G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  25. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 � q · � � d 2 q e i� b 4 π = exp ig 2 � (2 π ) 2 q 2 + µ 2 ◮ Dipole-dipole scattering high energy hadron ∼ gluon cloud gluon ∼ color dipole at large N c G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  26. Wilson lines High energy scattering: ◮ Recoil of scatterers is negligible → follow fixed trajectories ◮ Gives rise to non-perturbative techniques 1 d 2 b e iq ⊥ · b � W − 1 � � − 2 is T ( θ, q ) ≈ (Nachtmann, ’91) ◮ Eikonal ( e + e − ): < W > = ( b 2 µ 2 ) − i g 2 � q · � � d 2 q e i� b 4 π = exp ig 2 � (2 π ) 2 q 2 + µ 2 ◮ Dipole-dipole scattering high energy hadron ∼ gluon cloud ∼ bunch of dipoles gluon ∼ color dipole at large N c G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  27. Dipole-dipole kinematics D 1 ( p 1 ) + D 2 ( p 2 ) → D 1 ( k 1 ) + D 2 ( k 2 ) 0 T x p /m = (cos(θ/2) , −sin(θ/2), 0 ) 1 W ( θ/2 , b/2 ) W (- θ/2 , - b/2 ) T a p /m = (cos(θ/2) , sin(θ/2), 0 ) θ/2 2 T -θ/2 q= (0,0, q ) T b= (0,0, b ) -i χ θ χ ≈ log ( s/2m ) >>1 2 T x b/2 -b/2 (Meggiolaro, Giordano, Janik, Peschanski, Nowak, Shuryak, Zahed...) L x a (Nachtmann, ‘91) 1 � d 2 b e iq ⊥ · b � ( W ( θ/ 2 , b/ 2) W ( − θ/ 2 , − b/ 2) − 1 ) � − 2 is T ( θ, q ) ≈ G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  28. Wilson lines in holography < WW > = Z string [ ∂ B = C ] (Maldacena, ’98) Deconfined Geometry C W( C ) UV boundary z G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

  29. Wilson lines in holography < WW > = Z string [ ∂ B = C ] ≈ e − S cl (Maldacena, ’98) Deconfined Geometry C W( C ) UV boundary z G¨ ok¸ ce Ba¸ sar Holographic Pomeron and Schwinger Mechanism

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend