hiraku maruyama 1 haruo kishimoto 2 mana yasui 1
play

Hiraku Maruyama 1 *, Haruo Kishimoto 2 , Mana Yasui 1 , Teruhisa - PowerPoint PPT Presentation

ASEAN++ 2013 November 11-13, 2013, Chiang Mai University Hiraku Maruyama 1 *, Haruo Kishimoto 2 , Mana Yasui 1 , Teruhisa Horita 2 , Katsuhiko Yamaji 2 and Atsushi Yamazaki 1 1 Department of Earth Environmental Resource Engineering, Waseda


  1. ASEAN++ 2013 November 11-13, 2013, Chiang Mai University Hiraku Maruyama 1 *, Haruo Kishimoto 2 , Mana Yasui 1 , Teruhisa Horita 2 , Katsuhiko Yamaji 2 and Atsushi Yamazaki 1 1 Department of Earth Environmental Resource Engineering, Waseda University, Japan 2 National Institute of Advanced Industrial Science and Technology, Japan 1

  2. Solid Oxide Fuel Cell (SOFC) Fuel Cell = power generator using O 2 and H 2 Fuel(100%) Fuel(100%) Power plant Fuel cell heat waste wire loss heat waste (20%) (5%) (55%) Heat Electricity Electricity (40%) (40%) (40%) Solid Oxide Fuel Cell(SOFC) ・ High total efficiency (~87%) ・ High output power ・ Easy gas reforming (CH 4 → H 2 ) http://www.chuden.co.jp/hekinan-pr/guide/facilities/thermalpower.html http://techon.nikkeibp.co.jp/article/WORD/20060418/116213/ http://www.osakagas.co.jp/company/press/pr_2010/1190846_2408.html

  3. Solid Oxide Fuel Cell (SOFC) SOFC e - O 2- H 2 O O H 2 + O 2- 2 →H 2 O + 2e- electrolyte H 2 anode cathode (ceramics) Electrolyte performance = oxygen ion conductivity Higher temperature σ = qn μ (700~1000 ℃ ) is necessary σ : conductivity q : charge n :carrier concentration μ : carrier mobility

  4. Apatite-type lanthanum silicate Reference: Welcome to Apatite Ionic Conductivity Home Page Fig. crystal structure of La 9.33 Si 6 O 26 Fig. conductivities of electrolyte[2] showing a unit cell[1] [YSZ: (ZrO 2 ) 0.91 (Y 2 O 3 ) 0.09 LSGM: (La 0.8 Sr 0.2 )(Ga 0.8 Mg 0.2 )O 3- α ] advantage La 9.33+ x Si 6 O 26+1.5 x ( x =0~0.67) 1. Higher ion conductivity ・ structure ≒ apatite [Ca 10 (PO 4 ) 6 O 2 ] 2. Lower temperature dependency ・ conductor : interstitial oxygen SOFC can be used ion ・ conduction path : c -axis at lower temperature Reference:[1] Welcome to Apatite Ionic Conductivity Home Page [2]Atsushi Mineshige et al, Effect of cation doping on ionic and electronic properties 4 for lanthanum silicate-based solid electrolytes, Solid State Ionics, 2011, Vol.192, pp.195 – 199

  5. Purpose Improvement of oxygen ion conductivity σ = qn μ σ : conductivity q : charge n :carrier concentration μ : carrier mobility Mn +2 Sample : Mn +3 Mn +4 La 10- x Mn x (SiO 4 ) 6 O 3+ δ ( x =0.1~1.0) Mn +6 Mn +7 Ex.) La 3+ 10 (SiO 4 ) 6 O 3 La 3+ 9.0 Mn 4+ Mn 4+ 1.0 (SiO 4 ) 6 O 3.5 How does Mn influence the conductivity? 5

  6. Solid state reaction method La 2 O 3 SiO 2 MnO 2 (planetary ball mill:250rpm,30min) Mix (powder,1400 ℃ ,10h) Calcine Fig. obtained pellet Grind (cold isostatic press:392MPa) Casted (1600 ℃ 10h) 4μm Heat Fig. SEM image of pellet’s surface (relative density:83-97%) Polish 6

  7. Measurement method AC ・ Two-terminal method 8㎜ 1 ㎜ CE WE S RE ② Connect with the ① Pellets attached with Pt ③ Measure in the temperature 500 ~ 1000 ℃ electric wire mesh by Pt paste. Heated at ( in Air ) 1000 ℃ for 2h 7

  8. Phase identification by XRD La 2 SiO 5 SiO 2 sample:La 10- x Mn x (SiO 4 ) 6 O 3+ δ x=1.0 No mark : apatite x=0.9 x=0.8 Intensity(a.u) x=0.7 Non-doped x=0.6 La 2 SiO 5 appear x=0.5 x=0.4 x=0.3 Mn doping x=0.2 La 2 SiO 5 disappear x=0.1 non-doped 15 20 25 30 35 40 CuK  2  /Degree Fig. XRD results of La 10- x Mn x (SiO 4 ) 6 O 3+ δ 8

  9. Lattice constants change Shannon’s ionic radius( Å ) La > Mn Si > (1.03-) (0.67-0.90) (0.26-0.40) Fig. crystal structure of La 9.33 Si 6 O 26 showing a unit cell[1] smaller larger Lattice constant La 10 (Si 6- x Mn x ) O 26+δ (La 10- x Mn x ) Si 6 O 26+δ La 10 Si 6 O 27 9

  10. Lattice constants change Sample:La 10- x Mn x (SiO 4 ) 6 O 3+ δ a ( =b ) c Fig. lattice constant a and c to the amount of Mn doped into La site 0.1~0.3 La site Mn Si site (La 10-x Mn x )[Si 6-y Mn y ]O 26+δ 0.3~1.0 La site [ x+y= 0.1~1.0] Mn Si site 10

  11. Conductivity Sample : La 10- x Mn x (SiO 4 ) 6 O 3+ δ 0.1 × 10 Non-doped Fig. Arrhenius plot of La 10- x Mn x (SiO 4 ) 6 O 3+ δ 11

  12. Discussion σ = qnμ Carrier (O 2- ) mobility The number of Carrier ( O 2- ) σ : conductivity q : charge Phase purity n :carrier concentration μ : carrier mobility La site : Mn 2+ Si site: Mn 3+ [2] (La 3+ 10- x Mn 2+ La 3+ x )Si 6 O 3- x /2 10 Si 6 O 27 Mn 2+ La 10 Si 4+ 6 O 27 La 3+ 10 (Si 4+ 6 -y Mn 3+ Mn 3+ y )O 3- y /2 Carrier concentration Conductivity Mn doping (O 2- ) decrease decrease [2] Julian R. Tolchard, Peter R. Slater, and M. Saiful Islam (2007), Insight into Doping Effects in Apatite Silicate Ionic Conductors, Adv.Funct.Mater , 2007, Vol.17, pp.2564-2571 12

  13. Discussion 1073K Fig. conductivities as the function of x + y at 1073K (La 10- x Mn x )(Si 6-y Mn y )O 26+ δ Carrier mobility ฀Si substitution Conductivity ⇒ carrier mobility improved enhanced Phase purity ⇒ conductivity improved (La 2 SiO 5 disappeared) Ex) La 9.83 (Si 4.5 Al 1.5 )O 26 [3] [3] E. J. Abram, D.C.Sinclair and A. R. West (2001), A novel enhancement of ionic conductivity in the cation-deficient apatite 13 La 9.33 (SiO 4 ) 6 O 2 , J.Mater. Chem. , 2001, Vol.11, 1978 – 1979

  14. Discussion 1073K Fig. conductivities as the function of x + y at 1073K (La 10- x Mn x )(Si 6-y Mn y )O 26+ δ Carrier(O 2- ) Conductivity x + y =0.1: (La 10-x Mn x )(Si 6-y Mn y )O 26.95 concentration decreased x + y =1.0: (La 10-x Mn x )(Si 6-y Mn y )O 26.50 14

  15. Conclusion ① Co-exist phases like La 2 SiO 5 which appeared in La 10 Si 6 O 26+ δ were not observed in La 10- x Mn x Si 6 O 26+ δ . ② The structure formula of Mn-doped lanthanum silicate was (La 10- x Mn x )[Si 6- y Mn y ]O 26+δ . ③ The sample of x = 0.1 showed the highest conductivity in this examine. ④ Conductivity of Mn-doped lanthanum silicate is affected by the amount and distribution of Mn. 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend