higher rank fields currents and higher spin holography
play

Higher-Rank Fields, Currents, and Higher-Spin Holography - PowerPoint PPT Presentation

Higher-Rank Fields, Currents, and Higher-Spin Holography arXiv:1312.6673 O.A.Gelfond, M.V. + work in progress M.A.Vasiliev Lebedev Institute, Moscow Strings 2014 Princeton, June 25, 2014 HS AdS/CFT correspondence General idea of HS duality


  1. Higher-Rank Fields, Currents, and Higher-Spin Holography arXiv:1312.6673 O.A.Gelfond, M.V. + work in progress M.A.Vasiliev Lebedev Institute, Moscow Strings 2014 Princeton, June 25, 2014

  2. HS AdS/CFT correspondence General idea of HS duality Sundborg (2001), Witten (2001) AdS 4 HS theory is dual to 3 d vectorial conformal models Klebanov, Polyakov (2002), Petkou, Leigh (2005), Sezgin, Sundell (2005); Giombi and Yin (2009); Maldacena, Zhiboedov (2011,2012); MV (2012); Giombi, Klebanov; Tseytlin (2013,2014) ... AdS 3 /CFT 2 correspondence Gaberdiel and Gopakumar (2010) Analysis of HS holography helps to uncover the origin of AdS/CFT

  3. Unfolded Dynamics Covariant first-order differential equations 1988 ∞ � dW Ω ( x ) = G Ω ( W ( x )) , G Ω ( W ) = f ΩΛ 1 ... Λ n W Λ 1 ∧ . . . ∧ W Λ n n =1 d > 1: Compatibility conditions G Λ ( W ) ∧ ∂G Ω ( W ) ≡ 0 ∂W Λ Manifest (HS) gauge invariance under the gauge transformation δW Ω = dε Ω + ε Λ ∂G Ω ( W ) ε Ω ( x ) : ( p Ω − 1) − form , ∂W Λ G Ω ( W ): unfolded equations make sense in any Geometry is encoded by space-time d z = dz u ∂ dW Ω ( x ) = G Ω ( W ( x )) , x → X = ( x, z ) , d x → d X = d x + d z , ∂z u X -dependence is reconstructed in terms of W ( X 0 ) = W ( x 0 , z 0 ) at any X 0 Classes of holographically dual models: different G

  4. 3 d conformal equations Rank-one conformal massless equations Shaynkman, MV (2001) ∂ 2 ∂ ∂y α ∂y β ) C ± ( ∂x αβ ± i j ( y | x ) = 0 , α, β = 1 , 2 , j = 1 , . . . N Bosons (fermions) are even (odd) functions of y : C i ( − y | x ) = ( − 1) p i C i ( y | x ) Rank-two equations: conserved currents � � ∂ 2 ∂ ∂x αβ − J ( u, y | x ) = 0 Gelfond, MV (2003) ∂y ( α ∂u β ) J ( u, y | x ): generalized stress tensor. Rank-two equation is obeyed by N � C − i ( u + y | x ) C + J ( u, y | x ) = i ( y − u | x ) i =1 Primaries : 3 d currents of all integer and half-integer spins ∞ ∞ � � u α 1 . . . u α 2 s J α 1 ...α 2 s ( x ) , y α 1 . . . y α 2 s ˜ ˜ J ( u, 0 | x ) = J (0 , y | x ) = J α 1 ...α 2 s ( x ) 2 s =0 2 s =0 J asym ( u, y | x ) = u α y α J asym ( x ) ∆ J asym ( x ) = 2 ∆ J α 1 ...α 2 s ( x ) = ∆ ˜ J α 1 ...α 2 s ( x ) = s + 1 ∂ 2 ∂ Conservation equation: ∂u α ∂u β J ( u, 0 | x ) = 0 ∂x αβ

  5. Extension to Sp (2 M ) -invariant space Rank-one unfolded equation (2001) � � ∂ 2 ∂ C ± ( Y | X ) = 0 , ξ AB σ − = ξ AB ∂X AB ± iσ − ∂Y A ∂Y B , Y A - auxiliary commuting variables X AB matrix coordinates of M M , X AB = X BA ( A, B = 1 , . . . , M = 2 n ) Fronsdal (1985), Bandos, Lukierski, Sorokin (1999), MV (2001) ξ MN = dX MN are anti-commuting differentials ξ MN ξ AD = − ξ AD ξ MN C ( X ) , C A ( X ) Y A σ − C ( X | Y ) = 0 : Rank-one primary (dynamical) fields : ⇒ dynamical equations Unfolded equations (2001) ∂ ∂ ∂ ∂ ∂X BD C ( X ) − ∂X AD C ( X ) = 0 Klein-Gordon–like , ∂X AE ∂X BE ∂ ∂ ∂X BD C A ( X ) − ∂X AD C B ( X ) = 0 Dirac–like

  6. Extension to higher ranks and higher dimensions Rank- r unfolded equations: r twistor variables Y A i, j, . . . = 1 , . . . , r i � � r ∂ 2 � ∂ ξ AB C ± ( Y | X ) = 0 , − = ξ AB ∂X AB ± iσ r σ r δ ij , − ∂Y A j ∂Y B j =1 i A rank- r field in M M ∼ a rank-one field in M r M with coordinates X AB . ij → Y � A , Y A � A = 1 . . . r M i Embedding of M M into M r M : X AB − X ˜ A ˜ B → ˜ X AB 11 = X AB 22 = . . . = X AB = X AB rr The map M M − → M r M preserves Sp (2 M ) Field-current correspondence: Flato-Fronsdal (1978) for M = 2 Alternative interpretation: multi-particle states (=higher-rank field) in lower dimension=single-particle states in higher dimensions Problem: pattern of the holographic reduction of higher-dimensional models to the lower-dimensional ones

  7. Rank- r fields and equations − = ξ AB � r ∂ 2 σ r σ r − C ( Y | X ) = 0, Rank- r primary fields: δ ij j =1 ∂Y A j ∂Y B i � C i 1 ; ... ; i n A 1 ; ... ; A n ( X ) Y A 1 · · · Y A n ⇒ tracelessness: δ i 1 i 2 C i 1 ; i 2 ; ... C ( Y | X ) = ( X ) = 0 . ... i 1 i n n Since C ... i m ... i k ... ... A m ... A k ... ( X ) = C ... i k ... i m ... ... A k ... A m ... ( X ) , rank- r primary fields are described by -Young diagrams Y 0 [ h 1 , ..., h m ] obeying h 1 + h 2 ≤ r , h 1 ≤ M Rank- r primary fields C Y 0 ( Y | X ) satisfy rank- r dynamical equations ∂ ∂ ∂ ∂ E A 1 [ r − h 2 +1] , A 2 [ r − h 1 +1] , A 3 [ h 3 ] ,...,A n [ h n ] . . . . . . . . . i 1 [ h 1 ] , i 2 [ h 2 ] , i 3 [ h 3 ] ,..., i n [ h n ] ∂Y A 1 ∂Y A 1 ∂Y A h 1 ∂Y A hn n n 1 1 i 1 i hn i 1 i h 1 n n 1 1 � �� � � �� � h n h 1 ∂ ∂ · · · C Y 0 ( Y | X ) = 0 . ∂X A h 1+1 A h 2+1 ∂X A r − h 2+1 A r − h 1+1 1 2 1 2 � �� � r +1 − h 1 − h 2 The parameter E ... projects to Y 0 [ h 1 , h 2 , h 3 , . . . , h n ] and to its ... rank- r two-column dual Y 1 [ r + 1 − h 2 , r + 1 − h 1 , h 3 , . . . , h n ] with respect to the lower and upper indices, respectively

  8. Multi-linear currents For r = 2 κ , a ( κM − κ ( κ − 1) ) -form 2 � ∂ ∂ ∂ ∂ � Ω( J ) = F i 1 [ κ ] ,..., i N [ κ ] D A 1 [ κ ] ,...,A N [ κ ] J ( Y | X ) . . . . . . . . . � Y =0 ∂Y A κ A κ ∂Y A 1 A 1 1 N 1 ∂Y N ∂Y i κ i κ i 1 i 1 1 N 1 N � �� � � �� � κ κ where N = M + 1 − κ F is described by traceless diagram Y [ κ, . . . κ ] , and � �� � N 3 . . . ξ D κ − 1 D 1 1 . . . ξ D M 1 A 1 κ ξ D 1 1 D 1 2 ξ D 2 1 D 1 κ ξ D κ 1 A 1 D A 1 [ κ ] ,...,A N [ κ ] = ǫ D 1 N . . . 1 . . . ǫ D 1 1 1 ...D M κ ...D M n +1 ξ D n +1 ξ D n n D n D n 1 ξ D κ +1 n +2 . . . ξ D κ − 1 κ ξ D κ n A n 1 . . . ξ D M n A n N . . . ξ D κ κ A κ A κ 2 . . . ξ D M κ A κ D n n κ n N is closed provided that J ( Y | X ) obeys the rank- r = 2 κ equations. The current J η ( Y | X ) = η j 1 ,...,j r ( A ) C j 1 ( Y j 1 | X ) . . . C j r ( Y j r | X ) where A 1 ∂ A 2 ∂ B ( Y j | X ) = 2 X AB + Y B j , j C ( Y j | X ) = j ∂Y A ∂Y C j j and C j ( Y | X ) – rank-one fields, generates r -linear charge Q r η ( C ) Multiparticle algebra: string-like HS algebra (2012)

  9. σ − -cohomology analysis Rank- r primary fields and field equations are represented by the coho- mology groups H 0 ( σ r − ) and H 1 ( σ r − ) , respectively. Higher H p ( σ − ) (and their twisted cousins) are responsible for HS gauge fields and their field equations General H p ( σ − ) via homotopy trick: conjugated operators Ω and Ω ∗ ∂ − = T AB ξ AB , Ω ∗ = T AB Ω := σ r ∂ξ CD , ∂ ∂ ∂ T CD = Y C j δ ij , δ ij , i Y D T A B = Y A T AB = = sp (2 M ) j ∂Y A ∂Y B ∂Y B i j j 2 τ mk τ mk + ν A ∆ = { Ω , Ω ∗ } = 1 B ν A B − ( M + 1 − r ) ν A A ∂ ∂ τ mk = Y mA ∂Y kA − Y kA ∂Y mA are o ( r ) − -generators ∂ ν A B = 2 ξ AD ∂ξ BD + T A B are gl tot M - generators that act on Y A and ξ AB i ∆ is semi positive-definite H ( Ω ) ⊂ ker ∆

  10. Young diagrams and South-West principle Y ′ [ B 1 . . . ] ⊂ Y [ h 1 . . . ] ⊗ ( ⊗ n Y δ [1 , 1]) ⊗ Y A [ a 1 , . . . ] where n is a number of o ( r ) metric tensors δ ij , Y A [ a 1 , . . . ] : ξ AB YD Y ′ [ B 1 . . . , B m ] Y [ h 1 . . . , h k ] o ( r ) YD , gl M : YD , � � τ mk τ mk = 2 ν A B ν A h j ( h j − r − 2( i − 1)) , B = − B i ( B i − M − 1 − 2( i − 1)) , j i � � � ⇒ ∆ = − B i ( B i − 2( i − 1)) + h i ( h i − 2( i − 1)) + r ( B i − h i ) . i j i χ a ( S ( i, j )) = i − j + a , a ∈ R , S ( i, j ) – a sell on the intersection of j − th row and i − th column � � χ a ( Y ) = − 1 Y = S ( i, j ) h i ( h i − 2 i + 1 − 2 a ) 2 i S ( i,j ) ∈ Y min(∆) is reached when all cells of Y ′ ∆ semi-positive ⇒ are maximally south-west. This allows us to find H p ( σ r − ) ∀ p Higher-differential forms are relevant to the nonlinear field equations and invariant Lagrangians for multiparticle theory

  11. Invariant functionals Unfolded equations dF ( W ) = QF ( W ) , F ( W ) is an arbitrary function of W ∂ Q 2 = 0 Q = G Ω ∂W Ω , Q -closed p -form functions L p ( W ) are d -closed, giving rise to the gauge invariant functionals represented by Q -cohomology (2005) � S = Σ p L p So defined L p is d -closed in any space-time realization S is gauge invariant in any space-time

  12. Nonlinear HS Equations One-form W = d x + dx ν W ν + dZ A S A and zero-form B : W ⋆ W = i ( dZ A dZ A + F ( B, dz α dz α ⋆ kκ, d ¯ z ˙ α d ¯ α ⋆ ¯ z ˙ k ¯ κ )) W ⋆ B − B ⋆ W = 0 HS star product � dSdTf ( Z + S, Y + S ) g ( Z − T, Y + T ) exp − iS A T A ( f ⋆ g )( Z, Y ) = [ Y A , Y B ] ⋆ = − [ Z A , Z B ] ⋆ = 2 iC AB , Z − Y : Z + Y normal ordering Inner Klein operators: κ = exp iz α y α , α , y ˙ ¯ κ = exp i ¯ α ¯ κ ⋆ f ( y, ¯ y ) = f ( − y, ¯ y ) ⋆ κ , κ ⋆ κ = 1 z ˙ Nontrivial equations are free of the space-time differentials d Action is not known but probably is not needed

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend