high precision threshold of the toric code from spin
play

High-precision threshold of the toric code from spin-glass theory - PowerPoint PPT Presentation

. High-precision threshold of the toric code from spin-glass theory and graph polynomials . . . Masayuki Ohzeki Kyoto University 2015/07/01 This is in collaboration with Prof. Jesper L. Jacobsen (ENS). J. Phys. A: Math. Theor. 48 095001


  1. . High-precision threshold of the toric code from spin-glass theory and graph polynomials . . . Masayuki Ohzeki Kyoto University 2015/07/01 This is in collaboration with Prof. Jesper L. Jacobsen (ENS). J. Phys. A: Math. Theor. 48 095001 (2015) [IOP select] Supported by the JSPS core-to-core program, and MEXT KAKENHI (No.15H03699) . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 1 / 15

  2. | Ψ > | Φ > . Toric code . . Set a physical qubit on each edge of the square lattice on a torus. The stabilizer operators are ∏ ∏ σ z σ x Z p = X s = ( ij ) . ( ij ) ( ij ) ∈ ∂ p ( ij ) ∈ ∂ s They are commutable and the stabilizer state satisfies Z p | Ψ � = | Ψ � ( ∀ p ) X s | Ψ � = | Ψ � ( ∀ s ) . . . Z p X S The block denotes the physical qubit. . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 2 / 15

  3. | Ψ > . Trivial cycle = Stabilizer operators . . The stabilizer state can be characterized by a product of the operators | Ψ( V ∗ , V ) � = ∏ ∏ X s | Φ � (1) Z p p ∈ V ∗ s ∈ V We use the degeneracy as redundancy of the logical qubits. ∑ | Ψ( V ∗ , V ) � | Ψ 0 � ∝ V ∗ , V . . . Z p Z p Z p Z p Z p . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 3 / 15

  4. | Ψ > | Ψ > . Nontrivial cycle = Logical operators . . Let us introduce the “logical” operators ∏ ∏ σ z σ x Z h = X v = ( ij ) , ( ij ) ( ij ) ∈ L h ( ij ) ∈ L v and X h and Z v . ( Z h and X v , which commutes with each other, Z p and X s ) . . . . Encode . . We have four (2 2 ) different logical states. ∑ | Ψ( V ∗ , V ) � . | Ψ Z h � ∝ Z h X V X V V ∗ , V . . . . Z h Computation . . We can implement the Pauli operator Z h { X h , Z v } = 0 on the toric code. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15

  5. | Ψ > | Ψ > . Nontrivial cycle = Logical operators . . Let us introduce the “logical” operators ∏ ∏ σ z σ x Z h = X v = ( ij ) , ( ij ) ( ij ) ∈ L h ( ij ) ∈ L v and X h and Z v . ( Z h and X v , which commutes with each other, Z p and X s ) . . . . Encode . . We have four (2 2 ) different logical states. ∑ | Ψ( V ∗ , V ) � . | Ψ Z h � ∝ Z h X V X V V ∗ , V . . . . Z h Computation . . We can implement the Pauli operator Z h { X h , Z v } = 0 on the toric code. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15

  6. | Ψ > | Ψ > . Nontrivial cycle = Logical operators . . Let us introduce the “logical” operators ∏ ∏ σ z σ x Z h = X v = ( ij ) , ( ij ) ( ij ) ∈ L h ( ij ) ∈ L v and X h and Z v . ( Z h and X v , which commutes with each other, Z p and X s ) . . . . Encode . . We have four (2 2 ) different logical states. ∑ | Ψ( V ∗ , V ) � . | Ψ Z h � ∝ Z h X V X V V ∗ , V . . . . Z h Computation . . We can implement the Pauli operator Z h { X h , Z v } = 0 on the toric code. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 4 / 15

  7. . Error model . . The error chain (flip ( σ x ( ij ) ) and phase ( σ z ( ij ) ) errors) appears following ( e 2 K p = 1 − p ) P ( E ) = p | E | (1 − p ) N B −| E | ∝ e K p τ E ∏ ij p ij where τ E ij = 1 for ij ∈ E and τ E ij = − 1 for ij / ∈ E . . . p . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 5 / 15

  8. . Error model . . The error chain (flip ( σ x ( ij ) ) and phase ( σ z ( ij ) ) errors) appears following ( e 2 K p = 1 − p ) P ( E ) = p | E | (1 − p ) N B −| E | ∝ e K p τ E ∏ ij p ij where τ E ij = 1 for ij ∈ E and τ E ij = − 1 for ij / ∈ E . . . p . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 5 / 15

  9. . Error model . . The error chain (flip ( σ x ( ij ) ) and phase ( σ z ( ij ) ) errors) appears following ( e 2 K p = 1 − p ) P ( E ) = p | E | (1 − p ) N B −| E | ∝ e K p τ E ∏ ij p ij where τ E ij = 1 for ij ∈ E and τ E ij = − 1 for ij / ∈ E . . . p Error correction strategy Connection between two ends of error chains . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 5 / 15

  10. . Error model . . The error chain (flip ( σ x ( ij ) ) and phase ( σ z ( ij ) ) errors) appears following ( e 2 K p = 1 − p ) P ( E ) = p | E | (1 − p ) N B −| E | ∝ e K p τ E ∏ ij p ij where τ E ij = 1 for ij ∈ E and τ E ij = − 1 for ij / ∈ E . . . p Error correction strategy Connection between two ends of error chains . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 5 / 15

  11. . Optimal error correction . . The posterior distribution of additional chains E ∗ conditioned on ∂ E is e K p τ E ∗ P ( E ∗ | ∂ E ) ∝ ∏ ij ij where E ∗ + E + C = C ∗ and C ∗ is trivial cycle while C is nontrivial one. The trivial cycle reads τ E ∗ ij τ E ij τ C ij = σ i σ j . . . . . Mapping to Spin-glass theory . . Summation over C ∗ yields probability of C conditioned on ∂ E . e K p τ C ij τ E ij σ i σ j = Z C ( K p ) ∑ P ( E ∗ | ∂ E ) ∝ ∑ ∏ P ( C | ∂ E ) = E ∗ + E + C = C ∗ { σ i } ij where Z L ( K p ) is the partition function of the Edwards-Anderson model. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 6 / 15

  12. . Optimal error correction . . The posterior distribution of additional chains E ∗ conditioned on ∂ E is e K p τ E ∗ P ( E ∗ | ∂ E ) ∝ ∏ ij ij where E ∗ + E + C = C ∗ and C ∗ is trivial cycle while C is nontrivial one. The trivial cycle reads τ E ∗ ij τ E ij τ C ij = σ i σ j . . . . . Mapping to Spin-glass theory . . Summation over C ∗ yields probability of C conditioned on ∂ E . e K p τ C ij τ E ij σ i σ j = Z C ( K p ) ∑ P ( E ∗ | ∂ E ) ∝ ∑ ∏ P ( C | ∂ E ) = E ∗ + E + C = C ∗ { σ i } ij where Z L ( K p ) is the partition function of the Edwards-Anderson model. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 6 / 15

  13. . Optimal error correction . . The posterior distribution of additional chains E ∗ conditioned on ∂ E is e K p τ E ∗ P ( E ∗ | ∂ E ) ∝ ∏ ij ij where E ∗ + E + C = C ∗ and C ∗ is trivial cycle while C is nontrivial one. The trivial cycle reads τ E ∗ ij τ E ij τ C ij = σ i σ j . . . . . Mapping to Spin-glass theory . . Summation over C ∗ yields probability of C conditioned on ∂ E . e K p τ C ij τ E ij σ i σ j = Z C ( K p ) ∑ P ( E ∗ | ∂ E ) ∝ ∑ ∏ P ( C | ∂ E ) = E ∗ + E + C = C ∗ { σ i } ij where Z L ( K p ) is the partition function of the Edwards-Anderson model. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 6 / 15

  14. X XY XY Y X Φ Φ C C Y . How to identify the error correctablity? . . Compute the (finite but large-size) partition function with/without nontrivial cycles (Dennis 2002) { 1 ( ∃ C ) P ( C | ∂ E ) = Z C ( K p ) correctable ∑ Z ( K p ) = Z ( K p ) = Z C ( K p ) 1 / 4 uncorrectable . . . C . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 7 / 15

  15. . My hope . . Compute the precise error thresholds in analytical way! . . . . T Possible analytical way? . . Without disorder, the duality is available T c Z ( K ) = λ N B Z ( K ∗ ) ( p ,T ) N N where exp( − 2 K ∗ ) = tanh K . K = K ∗ leads to the critical point. The duality is applicable if p 0 p Self dual (Ising, Potts models) Red: Nishimori line (1 / T = K p ) Transition occurs odd times. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 8 / 15

  16. . My hope . . Compute the precise error thresholds in analytical way! . . . . T Possible analytical way? . . Without disorder, the duality is available T c Z ( K ) = λ N B Z ( K ∗ ) ( p ,T ) N N where exp( − 2 K ∗ ) = tanh K . K = K ∗ leads to the critical point. The duality is applicable if p 0 p Self dual (Ising, Potts models) Red: Nishimori line (1 / T = K p ) Transition occurs odd times. . . . . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 8 / 15

  17. . Duality for spin glass: Nishimori and Nemoto (2002) . . Duality transformation with replica method estimates the location of the critical points from [ λ n ] = 1 → [log λ ] = 0, but it fails self-duality. = 1 ( 1 + e − 2 / T ) ( 1 + e 2 / T ) (1 − p ) log + p log 2 log 2 . which leads to p N = 0 . 1100 ... (cf. 0.10919(7) by MCMC). . . . T T c . Renormalization (Ohzeki 2009) . . On the renormalized system, the duality ( p ,T ) N N analysis leads to more precise value by [log λ ( s ) c ] = 0 as p N = 0 . 1092 ... . . . . p ? p 0 . . . . . . Masayuki Ohzeki (Kyoto University) AQC2015 2015/07/01 9 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend