high performance low cost pin apd receivers in fiber
play

High Performance, Low Cost PIN, APD Receivers in Fiber Optical - PowerPoint PPT Presentation

High Performance, Low Cost PIN, APD Receivers in Fiber Optical Networks and FTTx Applications Hui Nie 4/23/2005 WOCC-2005 Receiver Applications Back Bone Core Nodes LR and VLR I nterface Cards Metro Transport Line Cards Metro


  1. High Performance, Low Cost PIN, APD Receivers in Fiber Optical Networks and FTTx Applications Hui Nie 4/23/2005 WOCC-2005

  2. Receiver Applications � Back Bone Core Nodes LR and VLR I nterface Cards � Metro Transport Line Cards � Metro Access Line Cards ( ADM’s) Long-Haul Backbone Metropolitan Backbone Metropolitan � Transceivers Access � Transponders Enterprise � OXCs Access • FTTx Applications/Demands also heating up! WOCC-2005

  3. Photodetectors and Optical Receivers � Introduction � Photodetectors Technologies � Overviews � PIN Photodiodes � Avalanche Photodiodes (APDs) � APD Design Trade-offs � Photoreceivers Technologies � Overviews � High Performance MSA Compliant Receivers & ROSAs � PIN, APD ROSA in FTTx Applications WOCC-2005

  4. Photodiodes Technologies � Overview Transit Time Bandwidth RC Time Bandwidth Surface-Illuminated PINs � PINs Waveguide PINs Traveling-Wave PINs Etch-Regrowth Planar SACM APDs Buried-Mesa APDs w/ Regrowth Guard Ring � APDs Resonant-Cavity APD w/ Thin Multiplication Layer Wafer-Fused SHIP APD InGaAlAs/InAlAs Superlattice APD Waveguide APD WOCC-2005

  5. Photoreceiver Sensitivities v.s. Bit-Rate -10 PIN OEIC PIN Hybrid EDFA Preamp Sensitivity @ BER=10 -9 (dBm) APD Hybrid -20 Quantum Limit -30 -40 -50 0.1 1 2.5 10 20 40 Bit Rate (Gbit/s) WOCC-2005

  6. Receiver Systems & Applications (10Gb/s Systems) 0 10 Gb/s Receivers Sys. 0.3 dB/km -10 Dispersion Received Power (dBm) limit 0 PIN+Amp . . 2 5 d B -20 / k m APD+Amp. (+EDC) -30 0.4 dB/km 0.6 dB/km EDFA+PIN -40 1.5 µ m 1.3 µ m -50 0 20 40 60 80 100 120 140 Transmission Length (km) WOCC-2005

  7. Industry Standard Top-illuminated Planar PIN Bonding pad Dielectric coating p+ Metal Contact SiNx Cap Layer Zn Diffused p+ InGaAs Absorption InP Buffer layer n - InP Substrate n++ AR coating WOCC-2005

  8. High-Speed Surface-illuminated Mesa PINs InGaAs/InP Graded Double � Heterostructure p-i-n Metal Reflector Alloyed p-Metal Superlattice Interface Grading � Small Mesa Size <10 µ m 2 � i InGaAs < 0.2 µ m InGaAs Absorption Layer � Air-Bridged PMGI Undercut, Mushroom Mesa to � Metal n-Metal p InP Minimize Parasitic Capacitance QE <25%@1.3 µ m � Hard to Manufacture � n InP Integrated Bias Circuit (Bias Tee � and Matched Resistor) InP:Fe Substrate Possible Wafer-Fusion DBRs to � Enhance QE SiNx Coating Light Input WOCC-2005

  9. Waveguide Photodetectors (WGPDs) Side-Illumination � Optimize Bandwidth and � QE Independently Multimode Ridge � Waveguide Micro-Lenses Fiber � Coupling, Small Spot Size External QE>70% � p+ InP Bandwidth>100GH p+ InGaAsP � i InGaAs -0.2 µ m Can be integrated OEIC � n+ InGaAsP n+ InP Photoreceiver polyimide WOCC-2005

  10. Traveling-Wave Photodetectors (TWPDs) Electrical Waveguide � Concomitant with Optical Waveguide Match Between Electrical � Wave and Optical Wave (50 Ω ) Eliminate RC Time Tradeoff � 1 µ m Higher Saturation Power � Bandwidth=172 GHz, QE~40% � Small Geometry w=1 µ m � WOCC-2005

  11. Multiplication Process Enhance Performance Multiplication region Distance p+ i n+ Electric field Injected electron Primary and Secondary electron E(k) + + + Time x Gain process will slow down Secondary hole transit-time! High Electrical Field near Figure of Merit: avalanche breakdown! Gain-Bandwidth Product WOCC-2005

  12. APD Photocurrent & Gain vs. Temperature 1.E-04 13 12 11 10 1.E-05 9 8 Current, A Gain 7 6 1.E-06 5 4 3 2 1.E-07 1 0 10 20 30 40 50 60 70 Reverse Voltage, volt n40C n20C 0C 25C 50C 85C M_40C M_20C M0C M25C M50C M85C WOCC-2005

  13. How does APD Enhance Rx Sensitivity? Receiver Sensitivity vs. APD Gain, TIA noise -24 Sen(120nA) Sen(250nA) Sen(350nA) -26 Receiver Sensitivty (dBm) Optimum-M Locus of Optimum APD gain -28 APD Noise < TIA Noise APD Noise > TIA Noise -30 -32 -34 -36 1 5 9 13 17 21 25 29 APD Gain WOCC-2005

  14. Planar Separate Absorption, Multiplication (SAM) APD Structure P+ Diffusion p-metal Guard Ring SiNx layer n- InP cap layer n+ InP Multi. n- InGaAsP layer n- InGaAs abs. layer n+ InP Buffer n+ InP Sub. AR coating n-metal WOCC-2005

  15. Planar SACM/SACGM APD n-Metal AR SiO 2 InGaAs/InP Two-step � MOCVD Planar Structure � p+ InP X j Etch and Regrowth Charge � and Multiplication Region X d n- InP Multiplication Diffusion controlled � t mesa n InP Charge t charge Multiplication Layer (single Grading Layer Diffusion or Well Etching- n InGaAs Diffusion) t InGaAs n- InGaAs Absorption Xd ~ 0.2-0.4 µ m � n- InP Buffer t Buffer GB product = 122 GHz � n+ InP Substrate Noise Ratio k ~0.45 � No Implant � WOCC-2005

  16. Resonant-Cavity InGaAs/InAlAS SACM APD Resonant-Cavity Structure � High QE ~ 75% � Mesa Isolated � SACM Configuration � Thin InAlAs Multiplication � Region (200 nm) Lower Noise k ~ 0.18 � InGaAs Cap Ring Contact Bandwidth>20 GHz � h υ p+ InAlAs High Gain-Bandwidth � Dielectric DBR 50 nm InAlAs Spacer Product Metal Ring Probe Metal Contact 60 nm InGaAs Abs. Layer 50 nm InAlAs Spacer 150 nm p-InAlAs Charge Polyimide APD Active Region 200 nm InAlAs Multiplication n+ InAlAs/InGaAs DBR n+ InAlAs n+ InP Buffer Layer Semi-Insulating InP Substrate WOCC-2005

  17. Wafer-Fused SHIP APD Silicon Heterointerface � Au/Zn Contact Photodetector (SHIP) PMGI Wafer-Fused Si � Multiplication Region Mesa Isolated (20-30 µ m) � p+ InGaAs Backside Illumination � n- InGaAs Bandwidth= 13 GHz � Bonding Interface GainxBandwidth= 315 � GHz p-type Implant n-type Si Substrate Reliability Issue � WOCC-2005

  18. Buried Mesa APD with Regrown Guard-Ring Proton Regrown Mesa Etch and Regrowth Implant � p-InP Isolation Layer (Patented) Isolation No Diffused Junctions and � Multiple Implanted GRs P+-InP Regrowth p-InP Guard Ring � + Implanted Guard Ring n-InP Mulutplication Bandwidth< 4GHz for OC-48 � Applications (2.5 GHz) InGaAsP GB Product=37 GHz � i-InGaAs Sensitivity= -33 dBm � Excess Noise Factor=0.4 � n-InP WOCC-2005

  19. Planar InGaAlAs/InAlAs MQW APD SI InP Substrate � Ti Implanted Guard-Ring Inverted Mesa Junction AR Coating � Ti Implanted Guard-Ring to � Decrease p-concentration of Field-Buffer Layer p+ InP SI-InP Substrate Dark Current Increase Due to P - InGaAs � Implantation p+ InP Field Buffer Zn Diffused SiN X Passivation � Region p+ Zn Diffusion Isolation � InGaAlAs/ InAlAs Contact Metal Deposition � Superlattice Flip-Chip Bonding � Cd=0.15pF, Cp=0.06pF p-contact n+ InAlAs Cap � R L =25 Ω to achieve � Sn Bump Bandwidth=15.2GHz Id=0.36 µ A@ M=10 � GB Product = 120GHz � WOCC-2005

  20. Waveguide APD Multimode Waveguide Structure � Mesa Etch and SiNx Passivation � 20 µ m InAlAs/InAlGaAs MWQ � p-Metal Multiplication Layer ~0.25 µ m 6 µ m InGaAs Abs. Layer ~ 0.3 µ m � SiNx p+ InAlGaAs Top and Bottom InAlGaAs � InAlGaAs Cladding Layer ~ 0.8 µ m n-Metal InAlAs/InAlGaAs MQW Bandwidth= 20 GHz � GB Product= 160 GHz n+ InAlGaAs � Large Dark Current � 1 µ A @ 90% V B InP Substrate � Edge Coupled w/ Lensed Fiber (3 � µ m Spot Size) WOCC-2005

  21. Real-World APD Device Specifications � Quantum Efficiency, Responsivity � Gain characteristics � Bandwidth @ M=10,12 when P IN is low (Sensitivity) � Bandwidth @ M< 4 when P IN is high (Overload) � Primary Dark Current � Excess Noise Factor � Capacitance � Breakdown Voltage WOCC-2005

  22. Performance of APD comes with price! Trade-off 1: Bandwidth~ Responsivity � InGaAs Absorption Layer Thickness � Trade-off 2: RC Bandwidth ~ Transit Time Bandwidth � InGaAs, InP layer thickness � Device geometry � Trade-off 3: BW@ M~10 ~ BW@ M~3 � Multiplication layer doping � Diffusion junction depth control (Ehet control) � Trade-off 4: Breakdown Voltage ~ Thickness, Doping � InGaAs, InP layer thickness � Multiplication layer doping � WOCC-2005

  23. APD Design- Balance between Trade-offs APD Bandwidth vs. Gain 10 3 dB Bandwidth (GHz) 1 1 10 100 Gain WOCC-2005

  24. TriQuint APD Chips Over than 15 years of design and volume manufacturing APDs used � in commercial communication systems (AT&T Bell Labs -> Lucent -> Agere -> TriQuint -> CyOptics?) High quality, high yield and low cost MOCVD epi � Reliability proven with > 5000 hrs aging and >15 years of field use � High-speed automated wafer level electrical and optical probing � systems Receiver performance demonstrated with high performance APD � chips WOCC-2005

  25. Failure Rates vs. Activation Energy Failure Rate vs. Ea 1000 P rojected Failure R ate, With >5000 hrs 100 MOCVD APD accelerated aging test, activation energy is FIT 10 extracted. 1 0.1 0.4 0.5 0.6 0.7 0.8 0.9 1 Activation Energy, eV With the estimated Ea of 0.96 eV, these devices have very small FIT (< 1 FIT). WOCC-2005

  26. TriQuint Receiver Product Family � Traditional butterfly package receiver � MSA small-form-factor surface-mounted Receiver � Ceramic packaged ROSA � TO-can based ROSA WOCC-2005

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend