high accurate computation of one loop integrals by
play

High-Accurate Computation of One-Loop Integrals by Several Hundred - PowerPoint PPT Presentation

High-Accurate Computation of One-Loop Integrals by Several Hundred Digits Multiple-Precision Arithmetic Hiroshi Fujiwara ( ) Graduate School of Informatics, Kyoto University CPP2010 Workshop KEK Japan, 24 September 2010 H.


  1. High-Accurate Computation of One-Loop Integrals by Several Hundred Digits Multiple-Precision Arithmetic Hiroshi Fujiwara ( 藤原 宏志 ) Graduate School of Informatics, Kyoto University CPP2010 Workshop KEK Japan, 24 September 2010 H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  2. Contents 1. Motivation of Multiple-Precision Arithmetic 2. Multiple-Precision Arithmetic Library “exflib” 3. Application to One-Loop Integrals (Box type) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  3. 1. Motivation of Multiple-Precision Arithmetic H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  4. Motivated Example (Ill-Posed Problem) A Cauchy problem of the Laplace equation y u = u ( x, y ) Ω △ u = 0 in Ω u ( x, 0) = x 5 on Γ ∂u x ∂y ( x, 0) = 0 on Γ Γ Exact Solution: Ω = { y > 0 } u ( x, y ) = x 5 − 10 x 3 y 2 +5 xy 4 Γ = { y = 0 } H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  5. Finite Difference Method x i = i ∆ x, y j = j ∆ y ∆ x, ∆ y : mesh-size • • • u i,j ≈ u ( x i , y j ) • • • • • • u i +1 ,j − 2 u i,j + u i − 1 ,j + u i,j +1 − 2 u i,j + u i,j − 1 = 0 ∆ x 2 ∆ y 2 u i, 0 = ( x i ) 5 u i, 1 − u i, 0 = 0 ∆ y H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  6. Numerical Results ( 0 ≤ t ≤ 0 . 6 ) ∆ y = ∆ x = 1 / 100 u ( x, y ) 5 4 3 2 1 0 -1 1 0.5 0 0 0.1 x 0.2 -0.5 0.3 y 0.4 0.5 -1 0.6 double (16 decimal digits) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  7. Numerical Results ( 0 ≤ t ≤ 0 . 6 ) ∆ y = ∆ x = 1 / 100 u ( x, y ) u ( x, y ) 5 3 4 2 3 1 2 0 1 -1 0 -2 -1 -3 1 1 0.5 0.5 0 0 0 0 0.1 x 0.1 x 0.2 0.2 -0.5 0.3 0.3 -0.5 0.4 y 0.4 y 0.5 0.5 -1 0.6 -1 0.6 0.7 double (16 decimal digits) 100 decimal digits Numerically Unstable Scheme → Double precision is not enough. H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  8. Partial Differential Eq. P u = f Discretization Real Number P h u h = f h H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  9. Partial Differential Eq. P u = f Discretization Real Number P h u h = f h Numerical Process Floating-Point Arithmetic P h,p u h,p = f h,p Numerical Error � u − u h,p � ≤ � u − u h � + � u h − u h,p � • � u − u h � : discretization error ← high-order discretization • � u h − u h,p � : rounding error ← multiple-precision arithmetic H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  10. Floating-Point Arithmetic and Rounding Error Rounding and Rounding Error π ≈ ( − 1) 0 × 10 0 × 3 . 14159 1 . 00000 × 10 0 ⊕ 1 . 00000 × 10 − 100 = 1 . 00000 × 10 0 1 . 23456 × 10 0 ⊖ 1 . 23455 × 10 0 = 1 . 00000 × 10 − 6 (cancellation) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  11. Floating-Point Arithmetic and Rounding Error Rounding and Rounding Error π ≈ ( − 1) 0 × 10 0 × 3 . 14159 1 . 00000 × 10 0 ⊕ 1 . 00000 × 10 − 100 = 1 . 00000 × 10 0 1 . 23456 × 10 0 ⊖ 1 . 23455 × 10 0 = 1 . 00000 × 10 − 6 (cancellation) IEEE754 double format : 15.95 decimal digits precision H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  12. Gap in Arithmetic and Finite Precision Arithmetic a 2 + b 2 ≥ 2 ab. 4 decimal digits computation, and let a = 1 . 022 , b = 1 . 038 . a 2 = 1 . 044484 − → 1 . 044 b 2 = 1 . 077444 − → 1 . 077 a 2 + b 2 − → 1 . 044 + 1 . 077 = 2 . 121

  13. Gap in Arithmetic and Finite Precision Arithmetic a 2 + b 2 ≥ 2 ab. 4 decimal digits computation, and let a = 1 . 022 , b = 1 . 038 . a 2 = 1 . 044484 − → 1 . 044 b 2 = 1 . 077444 − → 1 . 077 a 2 + b 2 − → 1 . 044 + 1 . 077 = 2 . 121 2 ab = 2 . 044 × 1 . 038 = 2 . 121672 − → 2 . 122 For a, b , we have ( a ⊗ a ) ⊕ ( b ⊗ b ) < 2 ⊗ a ⊗ b 1 xy + zw − 2 ts when x = y = t, z = w = s ? H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  14. Example of Numerical Instability a n +2 = 34 11 a n +1 − 3 � 1 11 a n � n a n = a 1 = 1 11 a 0 = 1 , 11 Numerical results are different on computer enrivonments. 2500 Xeon n Xeon(Linux) Itanium2 Itanium2 2000 1500 2 0 . 00826446 0 . 00826446 1000 6 . 20921 × 10 − 6 6 . 20921 × 10 − 6 5 500 a n 3 . 86014 × 10 − 11 3 . 85159 × 10 − 11 10 0 -500 -1000 40 9 . 68369 − 7 . 91327 -1500 50 571812 − 467270 -2000 (3 50 × 10 − 16 ≈ 7 . 2 × 10 7 ) . 36 38 40 42 44 46 n Rounding error grows rapidly, and double precision is not enough. H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  15. 2. Multiple-Precision Arithmetic Library “exflib” H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  16. exflib – extended floating-point arithmetic library Aimed For Scientific Computing, Computational Mechanics Fast computation in 100–1000 decimal digits Implementation and optimization in assembly language. Suitable arithmetic algorithm Large scale computation Saving memory MPI/OpenMP Simple Interface Fortran 90, programming language C++ Seamless interface as built-in types, functions H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  17. exflib : extended precision floating-point arithmetic library http://www-an.acs.i.kyoto-u.ac.jp/~fujiwara/exflib Key features 60 – 20,000 decimal digit arithmetic range : 10 − 10 18 10 10 18 – basic four rules, built-in functions polymorphic interface in C++, FORTRAN90 instruction level optimization in assembly language Available on Opteron, Athlon64 Xeon, Core, Atom, Pentium (AMD64, Intel64 IA32) Solaris, Linux, MacOSX (64bit), Windows (32bit) C++, FORTRAN90 MPI, OpenMP H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  18. Data Structure of exfloat 64-bit unsigned integer array e b s f 1 f 2 f 3 · · · f n ✲ ✛ ✛ ✲ ✛ ✲ ✛ ✲ ✛ ✲ ✛ ✲ 1 63 64 64 64 64 � n � f i ( − 1) s × 2 e b − BIAS × � 1 + 2 64 i i =1 1 + 64 n bits ≈ 19 . 27 × n decimal digits n = 6 115 . 62 digits n = 11 211 . 97 digits n = 16 308 . 32 digits H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  19. Arithmetic Benchmark (2007 Jan) 64-bit, Linux, GCC 3 unit : μ sec. Opteron150 2.4GHz Opteron246 2GHz mpfun90 FMLIB Maple MPFR Pari exflib Mathematica digits, op FORTRAN90 C C C 100, mul 3.0 1.1 22 1.5 0.24 0.29 0.14 div 3.5 1.4 26 5.9 0.52 1.2 0.33 1000, mul 60 17 100 17 6.2 15 3.7 div 63 20 93 50 16 23 8.3 10000, mul – 1105 3400 580 300 1400 280 div – 1251 3000 1800 730 1500 630 cf. http://www.medicis.polytechnique.fr/~pphd/mpfr/timings-220.html H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  20. Benchmark : Backward Heat Equation Numerical Solution (150 digits, SCM) ∂t = − ∂ 2 u ∂u 12 10 ∂x 2 8 6 u (0 , x ) = cos π 4 2 0 1 2 0.5 0 0 x 0.2 0.4 -0.5 0.6 t 0.8 -1 1 u ( t, − 1) = u ( t, 1) = 0 . The problem is ill-posed in the sense of Hadamard. Discretization by the Spectral Method → Linear Equation env. A : FMLIB, Xeon (2.0GHz) x 1, memory 4GB, 1 procs env. B : FMLIB, Xeon(2.0GHz) 6 CPU + Xeon(2.4GHz) 2CPU, total memory 16GB, 10 procs Prallel Comp env. C : exflib, Opteron250 (2.4GHz), 1 procs H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  21. (cnt.) Computational Time (150 decimal digits) unit : sec. error exflib Spectral Speed-up unknows �·� ∞ env. A env. B env. C Ratio : B Order C 10 − 47 40 1681 10581 1503 428 3 . 51 10 − 58 50 2601 40285 5529 1624 3 . 40 10 − 71 60 3721 — 16169 4815 3 . 36 (1.0GB) 10 − 86 70 5041 — 40296 11915 3 . 38 10 − 106 80 6561 — 89247 26900 3 . 32 10 − 118 90 8281 — 191380 54712 3 . 50 (4.6GB) cf. T.Takeuchi, H.Imai, Y.Iso, “Infinite-Precision Numerical Simulation of Cauchy problems for the elliptic operator”, 52th NCTAM Abstract(2003) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  22. 3. Application of the Proposed Multiple-Precision Arithmetic to One-Loop Integrals (Box Type) Thanks to Prof. F.Yuasa (KEK) and Prof. T.Ishikawa (KEK) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

  23. Infrared Divergent Process (One-Loop, Box Type) � 1 � 1 − x � 1 − x − y D 2 − ǫ 2 I = lim dx dy dz D 2 + ǫ 2 � 2 , ǫ ↓ 0 � 0 0 0 D = − xys − tz (1 − x − y − z ) + ( x + y ) λ 2 + (1 − x − y − z )(1 − x − y ) m 2 e + z (1 − x − y ) m 2 f . fictious photon mass ∼ 10 − 30 λ : m f m f m e : electron mass ∼ 0 . 0005 m f : Fermion mass ∼ 150 λ λ s , t : Mandelstam variables s = 500 2 , t = − 150 2 m e m e 2 decimal digits in 5.1 days (2008 KEK, x, y -quadruple , z -double) H. Fujiwara (Kyoto Univ.) Multiple-Precision Arithmetic to One-Loop Integrals

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend