hierarchical polynomial approximation
play

Hierarchical Polynomial Approximation Vincent LEFVRE, Jean-Michel - PowerPoint PPT Presentation

Hierarchical Polynomial Approximation Vincent LEFVRE, Jean-Michel MULLER, Serge TORRES Arnaire, INRIA Grenoble Rhne-Alpes / LIP, ENS-Lyon Journes TaMaDi, Lyon, 2011-12-13 [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii]


  1. Hierarchical Polynomial Approximation Vincent LEFÈVRE, Jean-Michel MULLER, Serge TORRES Arénaire, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon Journées TaMaDi, Lyon, 2011-12-13 [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii]

  2. Outline Two-Level Polynomial Approximations Computation of the Coefficients of a i ( k ) Computation of Consecutive Values of a Polynomial Error Bound on the Approximation of P k by Q k Summary for the Search for HR-Cases [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 2 / 11

  3. Two-Level Polynomial Approximations The problem: After scaling, values of f ( 0 ) , f ( 1 ) , f ( 2 ) , . . . , f ( T I − 1 ) on a large interval I , of width T I ? On I , f is approximated by a degree- d polynomial P , with an approximation error bounded by ǫ . I is split into sub-intervals J 0 , J 1 , J 2 , . . . of width T J , where J k = J k − 1 + T J . On each of the J k , we are looking for an approximation Q k of degree δ < d . a 0 ( k ) + a 1 ( k ) · X + a 2 ( k ) · X ( X − 1 ) P k ( X ) = P ( X + k · T J ) = + 2 · · · + a d ( k ) · X ( X − 1 )( X − 2 ) · · · ( X − d + 1 ) d ! a 0 ( k ) + a 1 ( k ) · X + a 2 ( k ) · X ( X − 1 ) Q k ( X ) = + · · · + 2 δ a δ ( k ) · X ( X − 1 )( X − 2 ) · · · ( X − δ + 1 ) � X � � = a i ( k ) · δ ! i i = 0 [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 3 / 11

  4. Computation of the Coefficients of a i ( k ) The problem: Compute the values of a i ( k ) . For each i ∈ � 0 , δ � , a i ( k ) is a degree- ( d − i ) polynomial function of k . We can compute the a i ( k ) from the d − i consecutive values P k ( 0 ) , P k ( 1 ) , P k ( 2 ) , . . . , P k ( d − i − 1 ) for the first values of k ; the following a i ( k ) ’s are computed with the difference table method . Let P k ( u ) be the “true” value, and ˆ P k ( u ) be the “computed” value. For 0 ≤ k ≤ d − i : a 0 ( k ) = ˆ ˆ ˆ ˆ P k ( 0 ) P k ( 1 ) P k ( 2 ) P k ( 3 ) · · · Let e be an upper bound ◗ ✑ ◗ ✑ ◗ ✑ ◗ ✑ s ◗ ✰ ✑ ◗ s ✰ ✑ s ◗ ✑ ✰ ◗ s ✑ ✰ � � � P k ( u ) − ˆ on � . P k ( u ) − − − − � � ❤ ❤ ❤ ❤ a 1 ( k ) ◗ ✑ ◗ ✑ ◗ ✑ s ◗ ✑ ✰ ◗ s ✰ ✑ s ◗ ✑ ✰ With exact subtractions, − ❤ − ❤ − ❤ a 2 ( k ) a i ( k ) will be known with ◗ ✑ ◗ ✑ ◗ s ✰ ✑ s ◗ ✰ ✑ an error ≤ 2 i e . − ❤ − ❤ a 3 ( k ) [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 4 / 11

  5. Computation of the Coefficients of a i ( k ) [2] Define values b i , j ( k ) as b i , 0 ( k ) + b i , 1 ( k ) · k + b i , 2 ( k ) · k ( k − 1 ) a i ( k ) = + · · · + 2 d − i b i , d − i ( k ) · k ( k − 1 )( k − 2 ) · · · ( k − d + i + 1 ) � k � � = b i , j ( k ) · ( d − i )! j j = 0 b i , 0 ( 0 ) = a i ( 0 ) a i ( 1 ) a i ( 2 ) a i ( 3 ) · · · ◗ ✑ ◗ ✑ ◗ ✑ ◗ ✑ s ◗ ✰ ✑ s ◗ ✑ ✰ ◗ s ✑ ✰ ◗ s ✑ ✰ − ❤ − ❤ − ❤ − ❤ b i , 1 ( 0 ) The term b i , j ( 0 ) is known ◗ ✑ ◗ ✑ ◗ ✑ ◗ s ✑ ✰ ◗ s ✰ ✑ ◗ s ✑ ✰ with an error ≤ 2 i + j e . − ❤ − ❤ − ❤ b i , 2 ( 0 ) ◗ ✑ ◗ ✑ ◗ s ✑ ✰ s ◗ ✰ ✑ − − ❤ ❤ b i , 3 ( 0 ) The a i ( k ) will be computed with additions from these coefficients b i , j ( 0 ) . . . [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 5 / 11

  6. Computation of Consecutive Values of a Polynomial δ � X � � Let Q ( X + k ) = of degree (at most) δ , where the q i ( k ) ’s are q i ( k ) · i i = 0 assumed to be the exact coefficients. The problem: Knowing the initial coefficients q i ( 0 ) of Q ( X ) , compute the consecutive values Q ( 0 ) , Q ( 1 ) , Q ( 2 ) , . . .  q 0 ( k − 1 ) q 1 ( k − 1 ) q 0 ( k ) = +   q 1 ( k − 1 ) q 2 ( k − 1 ) q 1 ( k ) = +   We have: . . .    q δ − 1 ( k − 1 ) q δ ( k − 1 ) q δ − 1 ( k ) = +  q δ being a constant, and Q ( k ) = q 0 ( k ) . The coefficients q i ( k ) will be represented by ˆ q i ( k ) with n i bits after the fractional point, i.e. on n i bits as we are interested in the values modulo 1, and an initial error of one ulp: u i = 2 − n i . Since q i ( k ) depends on q i + 1 ( k − 1 ) , we assume that ( n i ) is increasing: n i ≤ n i + 1 . And n δ = n δ − 1 for the constant coefficient q δ (using more precision would be useless). [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 6 / 11

  7. Computation of Consecutive Values of a Polynomial [2] Formally: n i ≤ n i + 1 , u i = 2 − n i , ˆ q i ( k ) ∈ u i Z or u i Z / Z , and | ˆ q i ( 0 ) − q i ( 0 ) | ≤ u i .  q 0 ( k − 1 ) q 1 ( k − 1 )) ˆ q 0 ( k ) = ˆ + ◦ (ˆ   q 1 ( k − 1 ) q 2 ( k − 1 )) q 1 ( k ) ˆ = ˆ + ◦ (ˆ    .  . Basic iteration: .  q δ − 2 ( k − 1 ) q δ − 1 ( k − 1 )) q δ − 2 ( k ) ˆ = ˆ + ◦ (ˆ     q δ − 1 ( k − 1 ) ˆ q δ − 1 ( k ) = ˆ + ˆ q δ  where | ˆ q δ − q δ | ≤ u δ − 1 and ◦ denotes the truncation of the value to the precision of the result (said otherwise, when doing an addition, the trailing bits of the more precise value are ignored). Let ǫ i ( k ) be a bound on the error on q i ( k ) , i.e. | ˆ q i ( k ) − q i ( k ) | ≤ ǫ i ( k ) . Initially, ǫ i ( 0 ) = u i for 0 ≤ i ≤ δ − 1. We have: ǫ i ( k ) = ǫ i ( k − 1 ) + ǫ i + 1 ( k − 1 ) + u i for 0 ≤ i ≤ δ − 1, with ǫ δ ( 0 ) = 0 in order to satisfy ǫ δ − 1 ( k ) = ǫ δ − 1 ( k − 1 ) + u δ − 1 . � k + 1 δ − 1 � � We can prove by induction that ǫ i ( k ) = . u j · j − i + 1 j = i [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 7 / 11

  8. Computation of Consecutive Values of a Polynomial [3] � k + 1 δ − 1 � � Proof by induction that ǫ i ( k ) = . u j · j − i + 1 j = i This is true for k = 0 and for i = δ , and � k δ − 1 δ − 1 � � k � � � ǫ i ( k − 1 ) + ǫ i + 1 ( k − 1 ) + u i = u i + u j · + u j · j − i + 1 j − i j = i + 1 j = i �� k δ − 1 � � k �� � = u j · + j − i + 1 j − i j = i � k + 1 δ − 1 � � = u j · = ǫ i ( k ) j − i + 1 j = i [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 8 / 11

  9. Computation of Consecutive Values of a Polynomial [4] If ℓ denotes the length of the interval (the number of values), i.e. 0 ≤ k < ℓ , then the error is bounded by: δ − 1 δ − 1 � ℓ � � ℓ � � � 2 − n i · max 0 ≤ k <ℓ ǫ 0 ( k ) ≤ u i · = . i + 1 i + 1 i = 0 i = 0 The values of n i will be determined so that this error bound is less than some given error bound E . This can be done by determining n 0 , then n 1 , then n 2 , and so on, each time by taking the smallest n i (multiple of the word size) such that � ℓ � 2 − n i · is less than a fraction of the remaining error bound. i + 1 Note: if n i + 1 = n i , one could have taken ǫ ′ i ( k ) = ǫ i + 1 ( k ) , but the gain would probably be low (since ǫ i + 1 ( k ) ∼ k · u i + 1 = k · u i at least) and the formulas would probably be much more complicated. [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 9 / 11

  10. Error Bound on the Approximation of P k by Q k d � m � � On the interval J k : P k ( m ) − Q k ( m ) = a i ( k ) · i i = δ + 1 d � kT J � � with a i ( k ) = ∆ i P ( kT J ) = a j ( 0 ) · . j − i j = i Thus d j � kT J �� m � � � a j ( 0 ) P k ( m ) − Q k ( m ) = j − i i j = δ + 1 i = δ + 1 with 0 ≤ m ≤ T J − 1 and 0 ≤ kT J ≤ T I − T J . This gives the following error bound on the approximation of P k by Q k : j d �� T J − 1 � T I − T J � � � | a j ( 0 ) | j − i i j = δ + 1 i = δ + 1 but one can get better dynamical bounds by considering the sign of a j ( 0 ) . [tamadi2011b.tex 48259 2011-12-13 01:43:10Z vinc17/xvii] Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Hierarchical Polynomial Approximation Journées TaMaDi, Lyon, 2011-12-13 10 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend