hadronic matrix elements for dark matter and other
play

Hadronic matrix elements for Dark Matter and other searches - PowerPoint PPT Presentation

Hadronic matrix elements for Dark Matter and other searches Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett. 116 (2016) 172001 and in preparation) Laurent Lellouch


  1. Hadronic matrix elements for Dark Matter and other searches Laurent Lellouch CPT Marseille CNRS & Aix-Marseille U. Budapest-Marseille-Wuppertal collaboration (BMWc) (Phys.Rev.Lett. 116 (2016) 172001 and in preparation) Laurent Lellouch KEK-PH, , 13-16 February 2017

  2. Direct WIMP dark matter detection ↓ χ χ � λ Γ → L N χ = λ Γ N [¯ q [¯ L q χ = q Γ q ][¯ χ Γ χ ] − N Γ N ][¯ χ Γ χ ] q H Quark are confined within nucleons → nonperturbative QCD tool N N Laurent Lellouch KEK-PH, , 13-16 February 2017

  3. WIMP-nucleus spin-independent cross section . . . In low- E limit d σ SI χ A 1 π v 2 [ Zf p + ( A − Z ) f n ] 2 | F X ( q 2 ) | 2 Z X = dq 2 w/ F X ( � q = 0 ) = 1 nuclear FF and χ N couplings ( N = p , n ) f N λ q λ Q � f N � f N = m q + q Q M N m Q q = u , d , s Q = c , b , t p ′ − � p ) � = ( 2 π ) 3 δ ( 3 ) ( � such that ( f = u , . . . , t and � N ( � p ′ ) | N ( � p ) ) uu + ¯ f M N = σ fN = m f � N | ¯ f N f N ud M N = σ π N = m ud � N | ¯ dd | N � , ff | N � For heavy Q = c , b , t (Shifman et al ’78) m Q ¯ QQ � α 2 QQ = − 1 α s s O 6 4 π G 2 + O m Q ¯ � − → 4 m 2 3 Q Laurent Lellouch KEK-PH, , 13-16 February 2017

  4. . . . and relevant hadronic matrix elements Then obtain f N Q in terms of f N q through to M N = � N | θ µ µ | N � , w/    + β ( α s ) θ µ  � � m Q ¯ G 2 m q ¯ µ = ( 1 − γ m ( α s )) qq + QQ 2 α s q = u , d , s Q = c , b , t Integrate out Q = t , b , c and obtain f N c from f N q , q = u , d , s , etc. Will be done to O ( α 3 s ) (Hill et al ’15) , but at LO find   Λ 2 Q ≡ � N | m Q ¯ QQ | N � = 2 QCD f N � f N  + O α s , α 2 � �  1 − q s 4 m 2 M N 27 Q q = u , d , s since 4 πβ ( α s ) = − β 0 α 2 s + O ( α 3 s ) and β 0 = 11 − 2 3 N q − 2 3 N Q For f N q , q = u , d , s , use lattice QCD and Feynman-Hellman theorem � qq | N � = m q ∂ M N f N � q M N = � N | m q ¯ � ∂ m q � m Φ q Laurent Lellouch KEK-PH, , 13-16 February 2017

  5. What is lattice QCD (LQCD)? To describe ordinary matter, QCD requires ≥ 104 numbers at every point of spacetime → ∞ number of numbers in our continuous spacetime → must temporarily “simplify” the theory to be able to calculate (regularization) ⇒ Lattice gauge theory − → mathematically sound definition of NP QCD: U µ ( x ) = e iagA µ ( x ) ψ ( x ) ✻ r r r r r r r r ✻ a ❄ UV (& IR) cutoff → well defined path integral in r r r r r r r r Euclidean spacetime: r r r r r r r r � ¯ � ψ D [ M ] ψ O [ U , ψ, ¯ D U D ¯ ψ D ψ e − S G − r r r r r r r r � O � = ψ ] ✛ T r r r r ❄ r r r r ✲ ✻ � r r r r r r r r D U e − S G det ( D [ M ]) O [ U ] Wick = r r r r r r r r r r r r r r r r D Ue − S G det ( D [ M ]) ≥ 0 & finite # of dofs r r r r r r r r ❄ ✛ r r r r r r r r ✲ → evaluate numerically using stochastic methods L LQCD is QCD but only when N f ≥ 2 + 1, m q → m phys , a → 0, L → ∞ q HUGE conceptual and numerical challenge (integrate over ∼ 10 9 real variables) ⇒ very few calculations control all necessary limits Laurent Lellouch KEK-PH, , 13-16 February 2017

  6. Strategy of calculation Objective: Determine slope of M N wrt m q , q = u , d , s , at physical point Method: Perform many high-statistics simulations with various m q around physical values, various a < ∼ 0 . 1 fm and various L > ∼ 6 fm � 2 M 2 K − M 2 For each compute M π ( → m ud ), M η s = π ( → m s ), M D s ( → m c ) and M N ( → Λ QCD ) Study dependence of m q , q = ud , s , c and M N on M π , M η s , M D s , a and L For each simulation determine a , m Φ q ’s such that M π , . . . take their physical value in a → 0 and L → ∞ limit Compute, at physical point ∂ ln M 2 ∂ ln M N f N � P q = ∂ ln M 2 ∂ ln m q P = π,η s P Laurent Lellouch KEK-PH, , 13-16 February 2017

  7. Lattice details N f = 1 + 1 + 1 + 1 3HEX clover-improved Wilson fermions on tree-level improved Symanzik gluons 33 ensembles w/ total ∼ 169000 trajectories ∼ 500 measurements per configuration 4 a ∈ [ 0 . 064 , 0 . 102 ] fm ; M π ∈ [ 195 , 450 ] MeV w/ LM π > 4 Improvements over BMWc, PRL ’16 ✓ Charm in sea ✓ > ∼ × 100 in statistics ✓ > ∼ × 2 lever arm in m s ✓ Like PRL ’16 FH in terms of quark and not meson masses ✗ No physical m ud , but small enough and know M N from experiment Laurent Lellouch KEK-PH, , 13-16 February 2017

  8. M 2 π ∼ m ud dependence of M N (preliminary) 1150 β =3.2 β =3.2 QCD+QED β =3.3 1100 β =3.4 β =3.5 M N [MeV] 1050 1000 950 900 2 2 2 100 200 300 2 [MeV 2 ] M π Laurent Lellouch KEK-PH, , 13-16 February 2017

  9. M η s ∼ m s dependence of M N (preliminary) β =3.2 β =3.2 QCD+QED 960 β =3.3 β =3.4 β =3.5 940 M N [MeV] 920 900 880 2 2 2 2 2 2 300 400 500 600 700 800 2 [MeV 2 ] M η s Laurent Lellouch KEK-PH, , 13-16 February 2017

  10. Chain rule conversion matrix (preliminary) Have: 0.2 φ m ud /m s ∂ ln M N β =3.2 β =3.3 0.1 ∂ ln M 2 β =3.4 P β =3.5 w/ P = π, η s 0 1.5 φ m s /m s Want: 1 ∂ ln M N 0.5 ∂ ln m q 0 w/ q = u , d , s 2 2 2 2 2 2 2 2 2 100 200 300 300 400 500 600 700 800 2 [MeV 2 2 [MeV 2 M π ] M η ] s  ∂ ln M 2  � 0 . 94 ( 1 )( 1 ) ∂ ln M 2 η s � π 0 . 002 ( 0 )( 1 )  = ∂ ln m ud ∂ ln m ud  ∂ ln M 2 ∂ ln M 2 0 . 06 ( 2 )( 3 ) 1 . 02 ( 0 )( 2 ) η s π ∂ ln m s ∂ ln m s Laurent Lellouch KEK-PH, , 13-16 February 2017

  11. Systematic error assessment (preliminary) Estimated using extended frequentist approach (BMWc, Science ’08, Science ’15) Excited state contamination: 4 time intervals for correlations functions Mass interpolation/extrapolation errors M π ≤ 330 / 360 / 420 MeV different M π/η s dependences (polynomials, Padés, χ PT) continuum extrapolation: O ( α s a ) vs O ( a 2 ) ⇒ 672 analyses which differ by higher order effects AIC weight AIC weight Q weight Q weight flat weight flat weight 1 1 relative weight relative weight 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 20 30 40 50 40 50 60 70 σ udN [MeV] σ sN [MeV] Laurent Lellouch KEK-PH, , 13-16 February 2017

  12. Preliminary results Direct results f N f N ud = 0 . 0430 ( 19 )( 32 ) [ 8 . 6 %] s = 0 . 0564 ( 38 )( 35 ) [ 9 . 2 %] Using SU(2) isospin (BMWc, PRL116) w/ ∆ QCD M N = 2 . 52 ( 17 )( 24 ) MeV (BMWc, Science 347) & m u / m d = 0 . 485 ( 11 )( 16 ) (BMWc, PRL117) f p f p u = 0 . 0153 ( 6 )( 11 ) [ 8 . 1 %] d = 0 . 0264 ( 13 )( 21 ) [ 9 . 4 %] f n f n u = 0 . 0128 ( 6 )( 11 ) [ 9 . 7 %] d = 0 . 0316 ( 13 )( 21 ) [ 7 . 9 %] Using f N ud , s & HQ expansion up to O ( α 4 s , Λ 2 QCD / m 2 c ) corrections (Hill et al ’15) f N f N c = 0 . 0730 ( 5 )( 5 )( ?? ) [ 1 . 0 + ?? %] b = 0 . 0700 ( 4 )( 4 )( ?? ) [ 0 . 9 + ?? %] f N = 0 . 0678 ( 3 )( 3 )( ?? ) [ 0 . 7 + ?? %] t Laurent Lellouch KEK-PH, , 13-16 February 2017

  13. Low-energy effective h - N coupling (preliminary) 8 c b t 6 s p [%] 4 f f d 2 u 0 1 100 10000 m q [MeV] f fN is q contribution to effective coupling of Higgs to nucleon in units of M N ⇒ fraction of M N coming from q contribution to coupling of N to Higgs vev HQ expansion ⇒ Q = c , b , t contributions mainly through their impact on the running of α s f N = 0 . 310 ( 3 )( 3 )( ?? ) [ 1 . 4 + ?? %] Laurent Lellouch KEK-PH, , 13-16 February 2017

  14. Conclusion Scalar quark contents of p & n have been computed with full control over all sources of uncertainties Important for: DM searches; coherent LFV µ → e conversion in nuclei; describing low-energy coupling of N to the Higgs; understanding M N ; π N and KN scattering, etc. f N q , q = u , d , s & N = n , p are now known to better than 10% f N Q , Q = c , b , t and f N to even better precision Correlations between the various quantities will be given Hadronic ME are no longer the dominant source of uncertainty in DM direct detection rate predictions . . . . . . or in the determination of WIMP couplings from possible DM signals Laurent Lellouch KEK-PH, , 13-16 February 2017

  15. BACKUP Laurent Lellouch KEK-PH, , 13-16 February 2017

  16. Comparison N N f f ud s 0.02 0.04 0.06 0.08 0 0.1 0.2 0.3 0.4 0.5 GLS 91 _ GLS 91 _ Pheno. Pavan 02 _ Pavan 02 _ N f =2 Shanahan et al 12 _ Alarcon et al 12 _ Lutz et al 14 _ Shanahan et al 12 _ N f =2+1 Ren et al 14 _ Alvarez et al 13, FH _ An et al 14 _ N f =2+1+1 Lutz et al 14, FH _ Pheno. Alarcon et al 14 _ Ren et al 14, FH _ JLQCD 10, FH N f =2 _ Bali et al 11, ME _ Hoferichter et al 15 _ N f =2+1 ETM 16, ME _ JLQCD 08, FH _ Bali et al 16, ME N f =2+1+1 _ Bali et al 11, FH _ MILC 09, FH _ ETM 16, ME _ BMWc 11, FH _ Bali et al 16, ME _ QCDSF 11, FH _ BMWc 11, FH _ Ohki et al 13, ME _ Junnarkar et al 13, FH _ QCDSF 11,FH _ Gong et al 13, ME _ Yang et al 15, ME _ Yang et al 15, ME _ BMWc 16, FH _ BMWc 16, FH _ _ New dataset, FH New dataset, FH _ 0 0.1 0.2 0.3 0.4 0.5 0.02 0.04 0.06 0.08 Laurent Lellouch KEK-PH, , 13-16 February 2017

  17. Finite-volume effects β =3.2 1000 β =3.2 QCD+QED β =3.3 β =3.4 β =3.5 M N [MeV] 980 960 940 1/10 1/6 1/4 1/3 -1 [fm -1 ] L Fit away leading effects M X ( L ) − M X = cM 1 / 2 L − 3 / 2 e − LM π π M X Compabtible w/ χ PT expectation (Colangelo et al ’10) Laurent Lellouch KEK-PH, , 13-16 February 2017

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend