group viii ix metal complexes with n n bis sulfonyl
play

Group VIII & IX Metal Complexes with N,N'- - PowerPoint PPT Presentation

Group VIII & IX Metal Complexes with N,N'- Bis(sulfonyl)ethylenediamine Ligands R = Ms : CH 3 SO 2 R R R R' R' R' N N N Ts : p- CH 3 C 6 H 4 SO 2 Ru Ir Rh Tf : CF 3 SO 2 N N N R' R' Nf : n- C 4 F 9 SO 2 R' etc. R


  1. Group VIII & IX Metal Complexes with N,N'- Bis(sulfonyl)ethylenediamine Ligands R = Ms : CH 3 SO 2 R R R R' R' R' N N N Ts : p- CH 3 C 6 H 4 SO 2 Ru Ir Rh Tf : CF 3 SO 2 N N N R' R' Nf : n- C 4 F 9 SO 2 R' etc. R R R R' = H, Ph Reactivity base on the dynamic change in metal-nitrogen bonding R R R' R' N N L M M N N L R' R' R R L = CO, t- BuNC, PR'' 3 , DMF etc. Lewis acid catalytic reaction O C 6 H 5 Ru cat C 6 H 5 C 6 H 5 O ClCH 2 CH 2 Cl C 6 H 5 6h, 80 °C H S/C = 100 100% 第7 9 春季年会 1H337 ( 2001 ) 01

  2. New N,N'- bis(sulfonylamido)Complexes with Multiple Reaction Sites Half-sandwich type complexes with arene or Cp* ligand R R SO 2 SO 2 N N Ru + Ru N N SO 2 substrate SO 2 R R single reaction site This work Ru or Pd complexes with labile ligands L 4 Ru complex L 2 Pd complex R R SO 2 SO 2 L N N L L multiple reaction site Ru Pd L L N N L SO 2 SO 2 R R 02

  3. Preparation of L 4 Ru Complexes with N,N'- bis(sulfonyl)ethylenediamine ( t- BuNC) 4 Ru complex Tf CN t- Bu Tf C 6 H 5 t- BuNC (20 equiv.) N C 6 H 5 N CN t- Bu Ru Ru THF, reflux N C 6 H 5 N CN t- Bu C 6 H 5 12 h Tf Tf CN t- Bu 84% [starting Ru complex] = 1.0 x 10 -1 M (CH 3 CN) 4 Ru complex NCCH 3 Tf Tf C 6 H 5 N C 6 H 5 N NCCH 3 h ν (Hg lamp) Ru Ru CH 3 CN, rt N C 6 H 5 N NCCH 3 C 6 H 5 Tf 1 day Tf NCCH 3 98% [starting Ru complex] = 1.0 x 10 -2 M 03

  4. Ru[( S,S )-Tf 2 dpen]( t- BuNC) 4 Ru[( S,S )-Tf 2 dpen](CH 3 CN) 4 N3 C27 N2 N1 C22 N1 Ru1 Ru1 N1* N2 C17 N2* C32 N3* P1 (#1) C2 (#5) R R 0.055 0.050 0.069 0.060 R w R w side view side view Selected bond Selected bond lengths(Å) lengths(Å) 168.8(3)° ca. 180° Ru1-C17 1.936(7) Ru1-N2 2.000(9) Ru1-C22 1.937(7) Ru1-N3 2.026(6) Ru1-C27 2.019(8) Ru1-C32 2.023(7) Ru1-N1 2.165(8) Ru1-N1 2.176(5) Ru1-N2 2.185(5) 04

  5. Reaction of Ru[( S,S )-Tf 2 dpen](CH 3 CN) 4 with Various Ligands 1 H NMR ( δ /ppm) XylNC NCCH 3 CNXyl δ 2.29 ppm (s, 12H, CH 3 of XylNC) Tf Tf C 6 H 5 NCCH 3 (2.0 equiv.) C 6 H 5 N NCCH 3 N δ 2.36 ppm (s, 6H, C H 3 CN) Ru Ru CH 2 Cl 2 , rt δ 5.22 ppm (s, 2H, C H PhC H Ph) N N C 6 H 5 NCCH 3 C 6 H 5 NCCH 3 24 h Tf Tf 19 F NMR ( δ /ppm) NCCH 3 CNXyl δ -75.16 ppm (s, SO 2 C F 3 ) 95% IR (KBr): 2121 cm -1 XylNC = 2,6-(CH 3 ) 2 C 6 H 3 NC N N N N Tf Tf C 6 H 5 C 6 H 5 N N NCCH 3 N NCCH 3 Tf C 6 H 5 N NCCH 3 Ru or Ru (1.0 equiv.) N N Ru C 6 H 5 NCCH 3 C 6 H 5 N Tf Tf NCCH 3 NCCH 3 N ClCH 2 CH 2 Cl, 60°C C 6 H 5 NCCH 3 Tf NCCH 3 Λ ∆ 4 days 86% single diastereomer N N 1 H NMR (δ /ppm) N N = 1.95, 2.63 (bs, s, 3H, C H 3 CN) 5.11, 5.81 (s, 2H, N H PhN H Ph) 19 F NMR (δ /ppm) -77.17, -75.43 (C F 3 , each s) 05

  6. Preparation of N,N'- bis(sulfonylamido)Pd(II) Complexes R R C 6 H 5 NH C 6 H 5 N NCCH 3 Pd(OAc) 2 + 2 AcOH Pd + CH 3 CN, reflux NCCH 3 N C 6 H 5 NH C 6 H 5 R R 24 h 1.0 equiv. pale yellow Ts Tf Nf Pf C 6 H 5 C 6 H 5 C 6 H 5 C 6 H 5 N N N NCCH 3 N NCCH 3 NCCH 3 NCCH 3 Pd Pd Pd Pd NCCH 3 N N NCCH 3 N NCCH 3 N NCCH 3 C 6 H 5 C 6 H 5 C 6 H 5 C 6 H 5 Ts Tf Nf Pf 32% 81% 80% 66% Nf = n- C 4 F 9 SO 2 - Pf = C 6 F 5 SO 2 - 06

  7. Reaction of Pd Complex with Various Ligands Tf Tf C 6 H 5 C 6 H 5 N L N NCCH 3 L Pd Pd NCCH 3 L solvent, rt N N C 6 H 5 C 6 H 5 Tf Tf - 2CH 3 CN colorless pale yellow solvent L 2 equiv. yield, % t- BuNC 2.1 THF 99 N N CH 2 Cl 2 1.0 99 98 1.5 THF 1.5 THF a 96 Characterized by 1 H and 19 F NMR. a In the presence of MS 4A. 07

  8. Rearrangement of Allyl Ester via Kinetic Resolution Pd cat O O O O O O O O + + ClCH 2 CH 2 Cl C 6 H 5 C 6 H 5 C 6 H 5 C 6 H 5 60 °C, 8 h S R R S/C = 20 Pd cat ee, % a k S /k R b conv, % a Pd[( S,S )-Tf 2 dpen](CH 3 CN) 2 62 43.7 2.5 Pd[( S,S )-Ts 2 dpen](CH 3 CN) 2 3 0.3 1.0 Pd[( S,S )-Nf 2 dpen](CH 3 CN) 2 48 48.0 2.1 Pd[( S,S )-Pf 2 dpen](CH 3 CN) 2 59 60.5 4.3 Conditions; [ester] = 2.0 x 10 -1 M. a Determined by GC (CHIRASIL DEX-CB) and n- dodecane as an internal standard. b Calculated based on the equation shown below. ln (1-conv)(1- ee) k S /k R = ln (1-conv)(1+ee) 08

  9. SUMMARY Stereospecific Ligand Substitution R R R NCCH 3 SO 2 NCCH 3 L C 6 H 5 SO 2 SO 2 N NCCH 3 C 6 H 5 C 6 H 5 N N NCCH 3 L NCCH 3 Ru Ru Ru NCCH 3 N NCCH 3 NCCH 3 N N C 6 H 5 -CH 3 CN C 6 H 5 C 6 H 5 SO 2 NCCH 3 SO 2 NCCH 3 SO 2 L R R R Asymmetric [3,3]-Sigmatropic Rearrangement R SO 2 C 6 H 5 Pd cat N O O NCCH 3 O O O O O O + + Pd C 6 H 5 NCCH 3 N C 6 H 5 C 6 H 5 C 6 H 5 C 6 H 5 SO 2 R S R R k S / k R = up to 4.3 09

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend