gravitational waves from hidden qcd phase t ransition
play

Gravitational Waves from Hidden QCD Phase T ransition by Hiromitsu - PowerPoint PPT Presentation

Gravitational Waves from Hidden QCD Phase T ransition by Hiromitsu GOTO Kanazawa University in collaboration with Mayumi AOKI, Jisuke KUBO Based on Phys. Rev. D96 075045, (2017) arXiv:1709.07572 The 21st


  1. 
 
 Gravitational Waves from 
 Hidden QCD Phase T ransition by Hiromitsu GOTO 
 Kanazawa University 
 in collaboration with 
 Mayumi AOKI, Jisuke KUBO 
 Based on Phys. Rev. D96 075045, (2017) arXiv:1709.07572 
 The 21st Regular Meeting of New Higgs Working Group Dec. 22, 2017

  2. 
 EW Scale from 
 Classical Scale Invariance Breaking ✤ We focus on “Classical Scale Invariant Extension” 
 W.A. Bardeen, On naturalness in the standard model, FERMILAB-CONF-95-391 (1995) L SM | µ 2 → 0 λ HS ( S † S )( H † H ) + Scalar Portal Weakly : Colman-Weinberg Mechanism - Strongly : Dynamical Generation of Scale e.g. QCD 
 - Direct Transmission 
 J. Kubo, K. S. Lim, M. Lindner arXiv:1403.4262 S † S ∼ Λ 2 S † S H † H ⌦ ↵ ⌦ ↵ Scalar QCD λ HS H Indirect Transmission T. Hur, D-W. Jung, P. Ko and J-Y. Lee arXiv: 0709.1218, 1103.2571 ⌦ ¯ ⌦ ¯ λ HS h S i 2 H † H ∼ Λ 3 ↵ ↵ QCD yS ψψ ψψ H 2

  3. ✤ How can we test Indirect Transmutation? ⌦ ¯ ↵ Dynamical Origin : ψψ 6 = 0 Gauge Symmetry : G SM × SU( N c ) H T. Hur, D-W. Jung, P. Ko and J-Y. Lee arXiv: 0709.1218, 1103.2571 SM-singlet 
 N f L H H ⊃ − yS ¯ Explicit χ SB !! ψψ Vector-like Fermion Λ H h S i 6 = 0 h S SM-singlet Real Scalar V SM � � 1 L SM | µ 2 → 0 2 λ HS h S i 2 ( H † H ) EW D χ SB Dark Matter !! = Massive NG Bosons Hidden Baryon φ B × … U( N f ) L × U( N f ) R SU( N f ) V × U(1) V N 2 × f − 1 if y = 0 — we can obtain the symmetry by accident It may be good way to test it using DM as Hidden Hadron! 
 — BUT it becomes hopeless when couplings are too small… 3

  4. ✤ Our Target : Hidden Chiral Phase Transition 
 Explain not only Higgs but also Dark Matter Mass How deal with 
 QCD Phase Transition N f = 2+1 Pure SU(3) non-perturbative effect? ∞ Direct Calculation e.g. Lattice QCD cross over 3 = Effective Theory e.g. sigma model, 
 f N SM NJL model ,… m s What we have known so far In small y (Nc = Nf = 3) 
 1st-order PT realize First-order Chiral PT m u,d ∞ M. Holthausen, J. Kubo, K. S. Lim and M. Lindner, JHEP 1312 (2013) 076 
 Chiral limit 
 Y. Ametani, M. Aoki, HG, J. Kubo Phys Rev D 91(2015)115007 (Scale Invariance) How about GW from Hidden Chiral Phase Transition? 
 ⌦ ¯ — Chiral Condensation Not Higgs ↵ h h i 6 ψψ 4

  5. 
 
 
 Nambu—Jona-Lasinio Model 
 for Low Energy Effective Theory ✤ NJL Model + U(1) A breaking term (KMT term) 
 ( N f = 3) L NJL = Tr ¯ ∂ − yS ) ψ + 2 G Tr Φ † Φ + G D (det Φ + h.c ) ψ ( i / 4-Fermi 6-Fermi cf. m c where ( Φ ) ij = ¯ ψ i (1 − γ 5 ) ψ j ✤ Same Global Symmetry as at Low Energy 
 L H U(3) L × U(3) R → SU(3) V × U(1) V U(1) A χ SB Pattern by KMT term 5

  6. ✤ Self-Consistent Mean Field Approximation L NJL define “BCS” vacuum |”BCS” > = | σ , φ ( π ,K,…) > h Φ i = � 1 diag . ( σ , σ , σ ) + i ( λ a ) T φ a � � ( Φ ) ij = ¯ ψ i (1 − γ 5 ) ψ j 4 G CP 
 CP 
 ¯ φ ¯ ψγ 5 λψ ψψ σ Odd Even ¯ Interactions ψψ , σ , φ L MFA = Tr ¯ ∂ − M ) ψ + at most quadratic in fermions ψ ( i / Effective Potential with cutoff Λ H Internal fermion mass 8 G σ 2 − G D 3 16 G 3 σ 3 + V MFA = Through integrating out the internal fermion, 
 we can obtain non-zero < σ > (D χ SB) and 
 calculate the mass spectrum for hidden hadrons: M, m σ and m φ . 6

  7. ✤ Mass Spectrum and Dark Matter Annihilation 5000 M ( λ H , λ HS , λ S ) = (0 . 13 , 0 . 01 , 0 . 19) M mS mDM 4000 m φ < m S m φ > m S Mass [GeV] φ S φ SM 3000 φ φ SM S h S φ h This channel open φ h S 2000 m S 1000 m φ 0 0.001 0.01 0.1 1 y y -3 Need 2m φ = m S to obtain correct Ω DM y ≦ O(10 ) - -48 2 At most σ SI ~ 10 cm around m φ = 100 GeV - 1st-order PT 7

  8. ✤ Hidden Chiral Phase Transition V EFF ( S, σ , T ) = V h → 0 SM+ S ( S ) + V NJL ( S, σ ) + V CW ( S ) + V FT ( S, σ , T ) + V RING ( S, T ) where 2.5 λ H = λ S = 0.13 , λ HS = 0.02 M = σ + yS − G D 8 G 2 σ 2 2.0 y=0.005 y=0.007 y=0.006 1.5 L H ⊃ − yS ¯ < M >/ T ψψ 1.0 Not only σ but also S 
 get non-zero VEV 
 0.5 in generally y ≦ 0.006. 0.0 Y. Ametani, M. Aoki, HG and J. Kubo, 
 550 600 650 Phys. Rev. D 91 (2015) no.11, 115007 T [ GeV ] We assume 3D Euclidian Action for mean fields as " # ◆ 2 ◆ 2 Z − 1 σ ( S, σ , T ) + 1 Z ✓ d σ ✓ dS Z Z d 3 r S 3 ( T ) = + V EFF ( S, σ , T ) 2 2 dr dr Multi-Fields Tunneling 
 Compute at loop level overshot/undershot method does not work 8

  9. ✤ Bubble Nucleation from Hidden Chiral Tunneling Equations of Motion for Multi-Fields Tunneling " ◆ 2 # d 2 σ ∂ Z − 1 dr 2 + 2 ∂ V EFF ( S, σ , T ) + 1 σ ( S, σ , T ) d σ ✓ d σ dr = Z σ ( S, σ , T ) × 2 r ∂σ ∂σ dr ◆ 2 ϕ i ( ∞ ) = 0 d 2 S ∂ Z − 1 dr 2 + 2 dr = ∂ V EFF ( S, σ , T ) + 1 σ ( S, σ , T ) dS ✓ d σ with ϕ 0 2 i (0) = 0 r ∂ S ∂ S dr G 1 / 2 Λ = 1.82, (- G D ) 1 / 5 Λ = 2.29 In SCMF approximated NJL 
 σ disappear at symmetric phase 
 1.5 Z σ ( S / Λ = 0, σ / Λ ,T / Λ ) T/ Λ = 0 — Z σ ( σ ) → 0 as σ → 0 Λ 1 0 1.0 . 0 Λ = T/ Λ = 0.03 T/ Λ = 0.02 Λ / T Λ Compositeness condition 
 Λ 0.5 guarantee 
 the bounce solution! 0.0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 σ / Λ 9

  10. ✤ How to Find Multi-Bounce Solution More generally C. L. Wainwright arXiv:1109.4189 Find initial position ( σ 0 , S 0 ) 
 0.08 doubly fine-tuned 0.06 d 2 σ d 2 S dr 2 + 2 dr 2 + 2 d σ dS dr = F σ ( σ , S ) dr = F S ( σ , S ) S / Λ H 0.04 r r 0.02 ϕ i ( ∞ ) = 0 ϕ 0 and i (0) = 0 with 0.00 — Change the Question ! — 0.00 0.05 0.10 0.15 σ / Λ H 0.10 Find tunneling path S( σ ) 
 0.15 σ (r) σ ( r )/ Λ H and S ( r )/ Λ H 0.10 satisfied N S [S( σ )] = 0 0.08 S( σ ) σ S(r) 0.05 0.00 0.06 ϕ 0 i (0) = 0 0 100 200 300 400 d 2 σ r Λ H dr 2 + 2 d σ with dr = F σ ( σ , S ( σ )) S / Λ H 0.04 ϕ i ( ∞ ) = 0 r 0.02 ◆ 2 N S ( S ( σ )) ≡ d 2 S ✓ d σ ✓ dS ◆ + F σ ( σ , S ( σ )) − F S ( σ , S ( σ )) d σ 2 dr d σ 0.00 0.00 0.05 0.10 0.15 10 σ / Λ H

  11. 
 
 
 GW Signal from 
 Scale Invariant Hidden QCD PT ✤ HQCD Model Based on Classical Scale Invariance 
 Indirect Dimensional Transmission Fixed ⌦ ¯ ⌦ ¯ λ HS h S i 2 H † H ∼ Λ 3 ↵ ↵ ψψ yS ψψ H D χ SB as Origin 
 E χ SB: DM Mass & PT fixes HQCD Scale of EWPT & DM ✤ Strategy to Test HQCD with GW Spectrum 
 Model Parameter GW Parameter GW Spectrum NJL ( α , ˜ Ω GW ( f ) ( λ H , λ HS , λ S , y ) β ; T t ) V ( σ , S ) Test ( m DM , Λ H ) with LISA or DECIGO NJL 11

  12. y ≧ 0.0001 
 by hand λ HS ≧ 0.0001 
 by hand λ HS ≦ 0.12 m h = 125 GeV, <h> = 246 GeV 
 m S = 2m DM ✤ Benchmark Points — A , B , C and D m c = y h S i cf. current mass Large Small E χ SB λ HS Small Large Model Parameter ( λ H , λ HS , λ S , y ) 12

  13. ✤ GW Spectrums for Benchmark Points using parameterization in C. Caprini et al. arXiv:1512.06239 “runaway” v w =1 GW signal from this model ( Λ H < 200 TeV) may appear in DECIGO. 13

  14. Conclusion ✤ Scale Invariant QCD-like Hidden Sector ( Nc = Nf = 3 ) 
 We discussed indirect dimensional transmutation from 
 χ SB Pattern U(3) R × U(3) L → SU(3) V × U(1) V 
 In m DM < m S case 
 — Need Resonance Effect ( 2m DM = m S ) 
 — Poor testability in DM search because of small y 
 but chiral phase transition become first-order phase transition ✤ GW from Hidden QCD Phase Transitions 
 We predict the GW signal using SCMF approximated NJL analysis 
 They may appear O(0.01) ~ O(1) Hz region (DECIGO). 14

  15. Conclusion ✤ Analysis of Multi-Fields Tunneling 
 More interesting if there exist two scale first-order PT 
 Method : Path Deformation ✤ Model including Strong Dynamics 
 Compatible with scale invariant extension and GW Prediction 
 — Effective model may be practical approach now… 
 — When DM is hidden Baryon, m DM ~ Λ H , 
 peak frequency of GW signal corresponds to DM mass directly 15

  16. Backup Slides

  17. 
 
 Beyond the Standard Model 
 from Higgs Mass term V SM = µ 2 ( H † H ) + λ H ( H † H ) 2 * What is the origin of Higgs mass term? * ONLY Higgs mass term breaks scale invariance ▸ RG Equation for the Higgs Mass 
 d ln µ = 3 m 2 dm 2 t − 3 g 2 − 3 g 2 ✓ ◆ h h 2 1 2 λ H + y 2 8 π 2 4 20 ▸ Fine-Tuning Problem h = (10 19 GeV) 2 − (10 19 GeV) 2 = (125 GeV) 2 m 2 17

  18. “Fine-T uning Problem” 
 from Wilsonian RG Flow H. Aoki, S. Iso PhysRevD.86.013001 Who put Higgs near the critical line? ( λ 0 , m 0 ) @ Planck λ Symmetric 
 Broken 
 Phase Phase m 2 m 2 R > 0 R < 0 m 2 R ∼ O ( Λ 2 pl ) m 2 m 2 R = O ( Λ 2 R = 0 EW ) m 2 0 18

  19. × Scale Invariant Extension W.A. Bardeen, FERMILAB-CONF-95-391 (1995) M pl Classical Scale Invariance V SM = µ 2 ( H † H ) + λ H ( H † H ) 2 No large intermediate scale below the Planck scale Low-energy is responsible 
 for the origin of low energy scales Hidden dynamics in TeV scale 
 explain Electroweak symmetry breaking EW — What is the dynamical origin of Higgs mass? QCD 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend